
I let GF=1 (just for ease)
CX=2 (30,60,90 triangle)
This means that the sides of the original triangle are \(2\sqrt3\;units\)
So the area of the original triangle is
\(Area\;XYZ = \frac{1}{2}*2\sqrt3*2\sqrt3*sin60\\ Area \;XYZ= 6*\frac{\sqrt3}{2}\\Area \;XYZ= 3\sqrt3\;\;u^2\)
CG=4/3
So GX=2 - 4/3 = 2/3
\(tan60=\frac{XG}{GT}\\ \sqrt3=\frac{2}{3*GT}\\ GT=\frac{2}{3\sqrt3}\\ \)
\(\text{Area of }\triangle STX = GT*GX = \frac{2}{3\sqrt3}*\frac{2}{3}\\~\\ \text{Area of }\triangle STX = \frac{4}{9\sqrt3}\\~\\ \text{Area of intersection}=\triangle XYZ-3*\triangle XST\)
\(Intersection\; area = 3\sqrt3-3*\frac{4\sqrt3}{27}=\frac{27\sqrt3-4\sqrt3}{9}=\frac{23\sqrt3}{9}\\~\\\)
\(\displaystyle \frac{\text{intersection area}}{\text{area of original triangle XYZ}}=\frac{23\sqrt3}{9}\times \frac{1}{3\sqrt3}=\frac{23}{27} \)
.