$${\frac{{\mathtt{a}}}{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15}} = {\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}$$
$${\frac{{\mathtt{a}}}{{\mathtt{5}}}} = {\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{15}}$$
$${\mathtt{a}} = {\mathtt{5}}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{15}}\right)$$
$${\mathtt{a}} = {\mathtt{5}}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{15}}\right) \Rightarrow {\mathtt{a}} = -{\mathtt{87.5}}$$
Or if on the right side was-(3+1/2)
$${\frac{{\mathtt{a}}}{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{15}} = {\mathtt{\,-\,}}\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)$$
$${\mathtt{a}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{\,-\,}}\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{15}}$$
$${\mathtt{a}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{\,-\,}}\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{15}} \Rightarrow {\mathtt{a}} = -{\mathtt{2.5}}$$
.