Help
8√4x+2>5122x8√16x+88√4x+2>5122x82⋅√4x+2|512=838√4x+2>83⋅2x82⋅√4x+28√4x+2>86x82⋅√4x+28√4x+2>86x−2⋅√4x+2√4x+2>6x−2⋅√4x+23⋅√4x+2>6x|:3√4x+2>2x
Let's find the domain:
4x+2≥0|−24x≥−2|:4x≥−12
The domain is [−12,∞)
case differentiation
1. x≥0
√4x+2>2x|square both sides4x+2>4x2|−4x2>4x2−4x|:412>x2−x12>(x−12)2−14|+1412+14>(x−12)234>(x−12)2|√√32>|x−12||x−12|<√32⇒−√32<x−12<√32|+12−√32+12<x−12+12<√32+121−√32<x<1+√32
case differentiation
2. x < 0 , because the domain is x≥−12
x<0the domain is x≥−12 or −12≤x⇒−12≤x<0√4x+2⏟≥0>2x⏟<0|always true
together:
1−√32<x<1+√32−12≤x<0−12≤x<1+√32
8√[4x + 2] > 5122x / 8√[16x + 8]
8√[4x + 2] > 5122x / 8√[4(4x + 2)]
8√[4x + 2] > 5122x / 8 2√[(4x + 2)]
8√[4x + 2] > (83)2x / 8 2√[(4x + 2)]
8√[4x + 2] > 8 6x - 2√[(4x + 2)] we can solve for the exponents.......
√[(4x + 2)] > 6x - 2√[(4x + 2)]
√[(4x + 2)] > 6x - 2√[(4x + 2)] add 2√[(4x + 2)] to both sides
3 √[(4x + 2)] > 6x divide both sides by 3
√[(4x + 2)] > 2x square both sides
4x + 2 > 4x^2 divide through by 2
2x + 1 > 2x^2
0 > 2x^2 - 2x - 1
And the solution to this is 1/2 (1-sqrt(3)) < x <1/2 (1+sqrt(3))
However, for the original equation √[(4x + 2)] > 2x ......this is true if -1/2 ≤ x <1/2 (1+sqrt(3))
But, since 1/2 (1-sqrt(3)) > -1/2 , we can expand the solution interval to -1/2 ≤ x < 1/2 (1+sqrt(3))