Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
590
3
avatar

 

 

 

Please Help!!!

 Nov 6, 2016
 #1
avatar+12530 
0

Please Help!!!

laugh

 Nov 6, 2016
 #2
avatar+26396 
+5

 Help

 

84x+2>5122x816x+884x+2>5122x824x+2|512=8384x+2>832x824x+284x+2>86x824x+284x+2>86x24x+24x+2>6x24x+234x+2>6x|:34x+2>2x

 

Let's find the domain:

4x+20|24x2|:4x12

 

The domain is [12,)

 

case differentiation

1. x0

4x+2>2x|square both sides4x+2>4x2|4x2>4x24x|:412>x2x12>(x12)214|+1412+14>(x12)234>(x12)2|32>|x12||x12|<3232<x12<32|+1232+12<x12+12<32+12132<x<1+32

 

case differentiation
2. x < 0 , because the domain is x12

x<0the domain is x12 or 12x12x<04x+20>2x<0|always true

 

together:

132<x<1+3212x<012x<1+32

 

 

laugh

 Nov 7, 2016
 #3
avatar+130466 
0

8√[4x + 2] > 5122x / 8√[16x + 8]

 

8√[4x + 2] > 5122x / 8√[4(4x + 2)] 

 

8√[4x + 2] > 5122x / 8 2√[(4x + 2)] 

 

8√[4x + 2]  >  (83)2x / 8 2√[(4x + 2)] 

 

8√[4x + 2]  > 6x -  2√[(4x + 2)]    we can solve for the exponents.......

 

 √[(4x + 2)]  > 6x -  2√[(4x + 2)]      

 

 √[(4x + 2)]  > 6x -  2√[(4x + 2)]     add  2√[(4x + 2)]  to both sides

 

3 √[(4x + 2)] > 6x      divide both sides by 3

 

√[(4x + 2)]   >  2x      square both sides

 

4x + 2  > 4x^2     divide through by 2

 

2x + 1  > 2x^2   

 

0 > 2x^2 - 2x - 1  

 

And the  solution  to this is     1/2 (1-sqrt(3)) < x <1/2 (1+sqrt(3))  

 

However, for the original equation √[(4x + 2)]   >  2x  ......this is  true if   -1/2 ≤  x <1/2 (1+sqrt(3))

 

But, since 1/2 (1-sqrt(3))  > -1/2 , we can expand the solution interval to    -1/2 ≤ x < 1/2 (1+sqrt(3))

 

 

cool cool cool

 Nov 7, 2016

0 Online Users