From the center M of the circles, draw rays to the corner E and to the center S of the side belonging to the corner. The result is a right-angled triangle M, E, S with sides s/2, r and R.
Then:
\(R^2=(\frac{s}{2})^2+r^2\\r=\sqrt{R^2-(\frac{s}{2})^2}\\ \frac{s}{2}=R\cdot sin(60^{\circ})\)
\(r=\sqrt{R^2-R^2\cdot sin^260^{\circ}}\\ r=R\cdot \sqrt{1-sin^260^{\circ}}\\ r=R\cdot cos\ 60^{\circ}\\ \color{blue}r=\frac{1}{2}R\)
or very simply:
In the right triangle SME, angle SME=60°.
So is:
\(r=R\cdot cos\ 60^{\circ}\\ \color{blue}r=\frac{1}{2}R\)
!