Thanks, heureka....here's my approach....
Using the Law of Cosines we have that
12^2 = (2CD)^2 + 6^2 - [ 2 * 2CD * 6 ] cos BDA
144 = 4CD^2 + 36 - 24CDcosBDA
108 - 4CD^2 = - 24CDcosBDA
[ 4CD^2 - 108 ] / 24CD = cos BDA
[CD^2 - 27 ] / 6CD =cos BDA
Since BDA and CDA are supplementary.....-cos BDA = cosCDA
Using it again and substituting, we have
9^2 = CD^2 + 6^2 - [ 2 * CD * 6 ] [-cos BDA]
81 = CD^2 + 36 + 12CD [ CD^2 - 27] / 6CD ]
45 = CD^2 + 2[CD^2 - 27 ]
45 = CD^2 + 2CD^2 - 54
99 = 3CD^2
33 = CD^2
√33 = CD
And BD is twice this
So
BD + CD = BC = √33 + 2√33 = 3√33
Here's a pic :