g(x) = y
y = 3 2 (x - 4)
_______ + _________
x^2 - 16 (x + 4)(x - 4)
y = 3 + 2x - 8
__________
x^2 - 16
y = 2x - 5
_______
x^2 - 16
y (x^2 - 16) = 2x - 5
yx^2 - 16y = 2x - 5
16y = yx^2 - 2x + 5
16y = y (x^2 - (2/y)x + 5/y)
16 = x^2 - (2/y)x + 5/y complete the square on x
16 = x^2 - (2/y)x + 5/y + 1/y^2 - 1/y^2
Add 1/y^2 to both sides....subtract 5/y from both sides
16 + 1/y^2 -5/y = x^2 -(2/y)x + 1/y^2 factor the right side
16 + 1/y^2 - 5/y = (x - 1/y)^2
1/y^2 - 5/y + 16 = (x - 1/y)^2 get a common denominator on the left
[16y^2 -5y + 1] / y^2 = (x - 1/y)^2 take both roots
±√[ (16y^2 -5y + 1) / y^2 ] = x - 1/y add 1/y to both sides
1/y ±√ (16y^2 -5y + 1) / y
[ 1 ±√ (16y^2 -5y + 1) ] / y = x "swap" x and y
[ 1 ±√ [ 16x^2 - 5x + 1) ] / x = y = g-1(x)
Thus....this is the inverse.....but it is not one-to-one.....we have two values for g-1(5)
g-1 (5) = ( 1 + √ [ 16(5)^2 - 5(5) + 1 ] ) / 5 = ( 1 + √ 376 ) / 5 ≈ 4.078
g-1(5) = ( 1 - √ [ 16(5)^2 - 5(5) + 1 ] ) / 5 = ( 1 - √ 376 ) / 5 ≈ -3.678
So g-1 (5) = ≈4.078 and ≈ -3.678