(a - b)^3 + (b - c)^3 + ( c -a)^3 =
[( a - b ) + (b - c)] [ ( a - b)^2 - ( a - b)(b - c) + ( b - c)^2 ] + (c -a)^3 =
( a - c) [ a^2 - 2ab + b^2 - [ ab - b^2 - ac + bc] + b^2 - 2bc + c^2 ] + (c -a)^3 =
(a - c) [ a^2 - 2ab + b^2 - ab + b^2 + ac- bc + b^2 - 2bc + c^2 ] + (c -a)^3 =
(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] + (c - a)^3 =
(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] + ( c - a)^3]=
(a - c) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] + [ (c - a) (c - a)^2 ] =
- (c - a) [ a^2 - 3ab + 3b^2 + ac - 3bc + c^2 ] [ (c - a)( c^2 - 2ac + a^2 ] =
(c - a) [ -a^2 + 3ab - 3b^2 - ac + 3bc - c^2 + c^2 - 2ac + a^2 ] =
(c -a) [ 3ab - 3b^2 - 3ac + 3bc] =
(c - a) [ 3ab - 3ac - 3b^2 + 3bc ] =
(c - a) [ 3a ( b - c) - 3b ( b - c) ] =
(c - a) [3(a - b)) ( b - c)] =
3(a - b)(b - c) (c - a)