Since two of the sides must be parallel, assume that AB  is parallel to CD
 Drop a perpendicular from C to AB and let the intersection be the point E
 Let EB  = x
 Similarly, drop a perpendicular from D to AB  and let the intersection be the point F
 Let FA  = 52 - (39 + x)  = 13 - x
  
 So....the height  of the triangles  = height of the trapezoid
 The  height of the triangle on the right  =√[12^2 - x^2] = CE
 The height of the triangle on the left is √ [5^2 - (13 - x)^2 ] = DF
 And, as stated,  CE  = DF
 Equating the quantities under the roots, we have
  
 12^2 - x^2  = 5^2  - (13 - x)^2
 144 - x^2 = 25 - (169 - 26x + x^2)
 144 - x^2 = 25 - 169 + 26x - x^2
 144  = 25 - 169 +26x
 144 = -144 + 26x
 288 = 26x
 x  = 288/26  = 144/13
  
 So...the  height of the trapezoid = √[12^2 - (144/13)^2 ] = 60/13
  
 And the area  =  (1/2)(height)(sum of the bases)  =
  
 (1/2)(60/13) ( 39 + 52)  =
 (1/2) (60/13) (91)  =
 (1/2)(60) (91/13)  =
 (1/2)(60)(7)  =
 (1/2)(420)  =
  
 210 units^2 
  
  
  
  
 