y = x^2 - 8 ⇒ y^2 = x^4 - 16x^2 + 64 (1)
y^2 = -5x + 44 (2)
Set (1) = (2) and solve for x
x^4 - 16x^2 + 64 = -5x + 44
x^4 - 16x^2 + 5x + 20 = 0
x^2 (x^2 - 16) + 5( x + 4) = 0
x^2 (x + 4)(x - 4) + 5 (x + 4) = 0
(x + 4) [ x^2 ( x - 4) + 5 ] = 0
( x + 4) [ x^3 - 4x^2 + 5 ] = 0
x = -4 is one solution
Also x = -1 is another solution
To find the remaining polynomial use synthetic division
-1 [ 1 - 4 0 5]
-1 5 -5
____________
1 -5 5 0
So...the remaining polynomial is x^2 - 5x + 5....set to 0
x^2-5x + 5 = 0
x^2 - 5x + 25/4 = -5 + 25/4
(x - 5/2)^2 = 5/4 take both roots
x - 5/2 = ± √5 /2
x = 5/2 + √5/2 or 5/2 - √5/2
When x = -4, y= (-4)^2 - 8 = 8
x = -1 , y = (-1)^2 - 8 = -7
x = 5/2 + √5/2, y = (5//2 + √5/2)^2 - 8 = (1/2)(5√5 - 1)= (1/2)(√125 - 1)
x = 5/2 - √5/2, y = (5/2 - √5/2)^2 - 8 = (-1/2)(5√5 + 1) = (-1/2)(√125 + 1)
So....the product of the y coordinates is
( 8 * -7 * (1/2)*(-1/2)(√125 - 1)(√125 + 1 ] =
[ -56 * (-1/4) * (125 - 1) ] =
[ 14 * 124 ] =
1736