I agree with X2.....this one is difficult.....!!!
I took an alternative approach....in the interest of space cosiderations, I will use some tecnology to help with the answer....but....I get the same answer as X2 did!!!
 
First of all..... I wanted to find the point  where the tangent line intersects the x axis
Let this point =  A
 
Call  the distance between (2, 0) and A =  x
 
So..  using similar triangles..we have this relationship
 
[ x ] / [ 6 + x]  =  1 / 9
9x  =  6 + x
8x  = 6
x = 6/8  =  3/4
So....the point is  ( 2 - x , 0)  =  ( 2 - 3/4, 0)  =  (1.25, 0)  = A
 
Now we can find the distance betwwen the center of the smaller circle and A by using similar triangles again....call the distance, y....so we have
 
[ 1 + y] / [ 11 + y]  = [ 1 ] / [ 9]
9 [ 1 + y ]  = 11 + y
9 + 9y  = 11 + y
8y = 2
y = 1/4   = .25
 
And we can find the distance  between A  and the point where the tangent line touches the smaller circle  as    sqrt [ (1 + 1/4)^2  - 1]  =  sqrt [ (5/4)^2 - 1]  = sqrt [ (25 -16)/ 16] = sqrt (9/16) =
3/4   = .75
 
And we can find the point where the tangent line touches the smaller circle by using a little technology to find the intersection of these two circles :
(x - 2)^2  + ( y - 1)^2  = 1
(x - 1.25)^2 + y^2  = .75^2      
(1.04, 0.72)  =  B
 
 
Likewise......we can find the distance  between A  and the point where the tangent line touches the larger circle  as    sqrt  [ 11.25^2   - 9^2]  =  6.75
 
And........We can find the point where the tangent line touches the larger circle by using a little technology to find the intersection of these two circles :
(x - 8)^2  + (y - 9)^2  =  81
(x - 1.25)^2 + y^2  = 6.75^2    
( -0.64, 6.48) = C
 
The slope between B and C  is
 
[ 6.48 - 0.72] / [ -0.64 - 1.04)  =  [ 5.76 ] / [-1.68]  = -24/7
 
So....using  A  and this slope we can write an equation of the tangent line as
 
y  = (-24/7)(x - 1.25)
y = (-24/7) (x - 5/4)
y = (-24/7)x + 120/ 28
y = (-24/7)x + 30/ 7
 
So...."b"   =  30/7
 
 
 
 
  
 