5. Square ABCD has side length 60. An ellipse E is circumscribed about the square and there is a point P on the ellipse such that PC = PD =50. What is the area of E?
  
 This one is a little difficult !!!!
  
 Let the circle and the ellipse be centered at the origin
  
 We can let the vertices of the square be  A = (-30,30) , B =(30,30), C = (30, -30)  and D = ( -30, -30)
  
 The mid point of the bottom of the square is the point (-30, 0)
 Call this point, M
 And  PC = PD = 50
 So....we can form right triangle MPC  such that PC forms the hypotenuse = 50
 And MC = 30
 So....MP  is the other leg  =  √ [ PC^2 - MC^2] = √[ 50^2 - 30^2]  = √ [ 2500 - 900 ] =
 √1600 = 40
  
 So......the distance from the origin to M  = 30
 And the distance between M an P  =  40
 So....using symmetry.....we can let the vertical axis of the ellipse  = 2* (30 + 40) = 140  = 2b
 So......in the equation
  
 x^2            y^2
 ___   +     ___    =  1
  a^2          b^2
  
 We know that one point on the ellipse is (30, 30)  = (x , y)
 And "b"  is (1/2) * 140  = 70
  
 So.....we can find "a" as follows
  
 30^2           30^2
 _____  +    _____   =      1
   a^2            70^2
  
 900            900
 ____ +      _____  =    1
 a^2            4900
  
 900         9
 ___  +   ____  =    1
 a^2         49
  
 900                   9
 ____  =   1  -    ___ 
  a^2                   49
  
 900             [ 49 - 9]
 ___  =       _________
 a^2                 49
  
 900                 40
 ____   =        ____
  a^2                49
  
 So
  
 40 a^2 =  900*49
 40a^2 = 44100
 a^2  =  44100 / 40
 a^2 = 4410/4
 a = √ [ 4410 / 4 ]
  
 And  the area of the ellipse   =
  
 pi* a * b  =
  
 pi * √[ 4410/ 4} * 70  ≈  7301.9   units^2
  
 Here's the graph : https://www.desmos.com/calculator/r9mwhqlg2e
  
  
  
  
 