Using some trig
Note that cos (angle BDA) = -cos ( angle BDA) = cos (angle CDA)
also let BD = CD = x
and 5sqrt (2) = sqrt (50)
Using the Law of Cosines (twice)
AB^2 = x^2 + AD^2 - 2 (AD)(x) cos (BDA)
AC^2 = x^2 + AD^2 - 2(AD)(cos CDA) simplify these
50 = x^2 + 53 - 2(AD)(X) cos (BDA)
70 = x^2 + 53 - 2(AD)(x) (-cos (BDA)
50 = x^2 + 53 - 2(AD)(cos BDA)
70 = x^2 + 53 + 2(AD)( cos BDA) add these equations
120 = 2x^2 + 106
120 - 106 = 2x^2
14 = 2x^2
7 = x^2
sqrt (7) = x
So BC = 2x = 2sqrt (7) = sqrt ( 28)
Using Heron's formula to find the area
s = [ AB + BC + CD ] / 2 = [ sqrt (50) + sqrt (28) + sqrt ( 70) ] / 2
Area of ABC = sqrt [ s ( s - sqrt (50)) ( s - sqrt (28)) ( s -sqrt (70) ) ]
Using WolframAlpha to evaluate :
Area of ABC ≈ sqrt (346) ≈ 18.6 units^2