What we want is the intersection of the circle with the equation
(x -2)^2 + (y - 7)^2 = 25 (1)
with the line y = 13 - x (2)
Sub (2) into (1)
(x - 2)^2 + (13 - x - 7)^2 = 25
(x - 2)^2 + (6 -x)^2 = 25
x^2 - 4x + 4 + x^2 -12x + 26 = 25
2x^2 -8x + 30 = 25
2x^2 -8x + 5 = 0
The x values are
[ 8 + sqrt ( 8^2 - 4*2 *5) ] / 4 = [ 8 + sqrt (24) ] / 4 = 2 + sqrt (6) / 2
And 2 - sqrt (6) / 2
The y values are 13 - [ 2 + sqrt (6)/2] = 11 - sqrt (6)/2
And 13 - [2 - sqrt (6)/2] = 11 + sqrt (6) / 2
So the points are
( 2 + sqrt (6)/2 , 11 - sqrt (6) /2) and ( 2 -sqrt (6)/2 , 11 + sqrt (6) /2)