\(\dfrac{1}{\sqrt2+2+1-\sqrt{3}}+\dfrac{1}{\sqrt2-2-1+\sqrt{3}} \)
Simplify as
1 1
_________________ + _________________
sqrt (2) - sqrt (3) + 3 sqrt (2) + sqrt (3) - 3
First fraction
1 [ (sqrt (2) - sqrt (3)) -3] sqrt (2) - sqrt (3) - 3
____________________________________ = ________________________ =
[(sqrt 2 - sqrt 3) + 3 ] [ (sqrt 2 - sqrt 3) -3 ] [ (sqrt (2) - sqrt(3)] ^2 - 9]
sqrt (2) - sqrt (3) - 3 ( sqrt 2 - sqrt 3) - 3 3 - (sqrt 2 - sqrt 3)
_________________ = __________________ = __________________
2 - 2sqrt 6 + 3 - 9 -4 - sqrt 24 sqrt (24) + 4
Second fraction
1 [ (sqrt 2 + sqrt 3) + 3] 3 + (sqrt 2 + sqrt 3)
__________________________________ = ____________________ =
[(sqrt 2 + sqrt 3) - 3] [ (sqrt 2 + sqrt 3) + 3 ] (sqrt 2 + sqrt 3)^2 - 9
3 + (sqrt 2 + sqrt 3) 3 + (sqrt 2 + sqrt 3)
_______________________ = _________________
2 + 2sqrt 6 + 3 - 9 sqrt (24) - 4
Combine both
[ 3 - (sqrt 2 -sqrt 3)] [ 3 + (sqrt2 + sqrt3) ]
___________________ + ____________________
sqrt (24) + 4 sqrt (24) - 4
(multiply top / bottom by denominator conjugate)
[ 3 -sqrt 2 + sqrt 3] (sqrt (24) - 4 ) + [ 3 + sqrt 2 + sqrt 3 ] [ sqrt (24) + 4 ]
___________________________________________________________
24 - 16
6sqrt (24) + 2sqrt (72) + 8sqrt 2
___________________________ =
8
12sqrt 6 + 12sqrt 2 + 8sqrt 2
________________________ =
8
3sqrt 6 + 5sqrt 2
________________
2