P                    Q
                     4
                    X
                    8
    S                               R
  
  
 PXQ  and RXS are similar triangles
  
 The scale factor from  RXS and PXQ =  sqrt (8/4)  = sqrt (2)    /  1
  
 Thus the height  of RXS =  sqrt (2) h / ( 1 + sqrt 2)              where h is the height of the trapezoid
 And the height of PXQ  =  h /( (1 + sqrt 2) 
  
 And  the base of PXQ =   base of RXS/sqrt 2
  
 Using PXQ
 Area =  (1/2) (base of RXS)  /sqrt (2) * h / ( 1 + sqrt 2)
 4 = (1/2) (base RXS) * h / ( 2 +sqrt 2)
 8(2 + sqrt 2) /  base RXS  =  h
  
 Area of trapezoid =  (1/2) h (sum of bases)
  
 Area of trapezoid =  (1/2)[ 8 ( 2 + sqrt 2) ] / base of RXS ]  [ base of RXS + base PXQ   ]  =
  
  4 (2 + sqrt 2)  / [ base of RXS ]  * [ base of RXS * ( 1 + 1/ sqrt 2) ]  = 
  
  4 [ 2 + sqrt 2 ] [ 2 + sqrt 2 ]  / / 2    =
  
 2 [ 2 + sqrt 2] ^2  =
  
 2 [ 4 + 4sqrt 2 + 2] = 
  
 2 [ 6 + 4sqrt 2]  =
  
 12 + 8sqrt 2
  
  
  
 