Draw altitude CN to AB = h
We will have a right triangle CNB
Let BN = x
And angle NCB = 90 - 55 = 35
Using the Law of Sines
h /sin (55) = x / sin 35
h = xsin 55 / sin 35 (1)
Next, draw altitude DO to AB = h
We have another right triangle
Let AO = 96 - (44 + x) = 52 - x
Angle DAO = 180 - 110 = 70
Angle ADO = 90 - 70 = 20
Using the Law of Sines again
h / sin 70 = (52 - x)/ sin 20
h = (52 - x)sin 70 / sin 20 (2)
Equating (1) , (2)
xsin 55 / sin 35 = (52 - x)sin (70) / sin 20
x (sin 55 / sin 35) = 52(sin 70 / sin 20) - x ( sin70 /sin20)
x [ sin 55 / sin 35 + sin 70 /sin20 ] = 52 (sin70 /sin20)
x = (52)(sin 70 / sin20) / ( sin55 / sin35 + sin 70/sin 20)
h = (52)(sin 70 / sin20) / ( sin55 / sin35 + sin 70/sin 20) * (sin 70 / sin20) ≈ 94
Area = (1/2) (94) (44 + 96) = 47 * 140 ≈ 6580