Angle ABC =105
Let AD = x CD = 10 - x
BC / sin 30 = AC /sin 105
BC /sin30 = 10 /sin105
BC = 5/sin105
BA / sin 45 = AC / sin 105
BA / sin45 = 10 /sin105
BA = (10/sqrt 2) / sin 105 = 20 / (1 + sqrt 3)
Since BD is a bisector, then
BA / AD = BC / CD
(10/sqrt2)/ sin 105 / x = 5/sin105 / (10-x)
(10/sqrt 2) (10-x) / sin 105 = 5x / sin105
(10/sqrt 2) (10 -x) = 5x
100/sqrt 2 - (10/sqrt 2)x = 5x
100/sqrt 2 = (5 + 10/sqrt 2) x
x = (100/sqrt 2) / ( 5 + 10/sqrt 2) = (100) / (5sqrt 2 + 10) = 20 / (2 + sqrt 2) = AD
[ABD ] = (1/2)BA * AD * sin 30 = (1/4) [20 / (1 + sqrt 3)] * [ 20 /(2 + sqrt 2) ] ≈ 10.72