Find the value of x such that the area of a triangle whose vertices have coordinates (6, 5), (8, 2) and ( x, 11) is 15 square units.
$$area = \pm15 =
\dfrac{
\left|
\left[
\left(\begin{array}{c}
x\\
11
\end{array} \right)
-
\left(\begin{array}{c}
6\\
5
\end{array} \right)
\right]
\times\left[
\left(\begin{array}{c}
8\\
2
\end{array} \right)
-
\left(\begin{array}{c}
6\\
5
\end{array} \right)
\right]
\right|
}
{2}
\\\\
\pm30 =
\left|
\left[
\left(\begin{array}{c}
x\\
11
\end{array} \right)
-
\left(\begin{array}{c}
6\\
5
\end{array} \right)
\right]
\times\left[
\left(\begin{array}{c}
8\\
2
\end{array} \right)
-
\left(\begin{array}{c}
6\\
5
\end{array} \right)
\right]
\right|
} \\
\pm30 =
\left|
\left(\begin{array}{c}
x-6\\
11-5
\end{array} \right)
\times
\left(\begin{array}{c}
8-6\\
2-5
\end{array} \right)
\right|
} \\
\pm30 =
\left|
\left(\begin{array}{c}
x-6\\
6\end{array} \right)
\times
\left(\begin{array}{c}
2\\
-3\end{array} \right)
\right|
} \\\\
x_1 =?\\
30 =
\left|
\left(\begin{array}{c}
x_1-6\\
6\end{array} \right)
\times
\left(\begin{array}{c}
2\\
-3\end{array} \right)
\right|
} \\
(x_1-6)(-3)-6*2=30\\
(x_1-6)(-3)=42\\
(x_1-6)=-14\\
\textcolor[rgb]{1,0,0}{x_1 =-8}\\\\$$
$$x_2 =?\\
-30 =
\left|
\left(\begin{array}{c}
x_2-6\\
6\end{array} \right)
\times
\left(\begin{array}{c}
2\\
-3\end{array} \right)
\right|
} \\
(x_2-6)(-3)-6*2=-30\\
(x_2-6)*3+12=30\\
(x_2-6)*3=18\\
x_2-6=6\\
\textcolor[rgb]{1,0,0}{ x_2=12 }$$
a. is okay
