heureka

avatar
Имя пользователяheureka
Гол26367
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26367 
+3

Let F(x) be the real-valued function defined for all real x except for x = 0 and x = 1 and satisfying

the functional equation

\(F(x) + F\left(\frac{x-1}x\right) = 1+x.\)

F(x) + F\left(\frac{x-1}x\right) = 1+x.

Find the F(x) satisfying these conditions.

Write F(x) as a rational function with expanded polynomials in the numerator and denominator.

 

\(\begin{array}{|lrclcl|} \hline & F(x) + F\left(\frac{x-1}x\right) &=& 1+x \qquad (1) \\\\ \text{Set in (1) }x=\frac{x-1}{x}: & F\left(\frac{x-1}x\right) + F\left(\frac1{1-x}\right) &=& 1+\frac{x-1}{x} \qquad (2) \\\\ \text{Set in (1) }x=\frac1{1-x}: & F\left(\frac1{1-x}\right) + F(x) &=& 1+\frac1{1-x} \qquad (3) \\\\ \hline \\ (1) - (2) + (3): & F(x) + F\left(\frac{x-1}x\right) \\ & - \Big(F\left(\frac{x-1}x\right) + F\left(\frac1{1-x}\right) \Big) \\ & + F\left(\frac1{1-x}\right) + F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\\\ & F(x) + F\left(\frac{x-1}x\right) \\ & -F\left(\frac{x-1}x\right) - F\left(\frac1{1-x}\right) \\ & + F\left(\frac1{1-x}\right) + F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\\\ & 2F(x) &=& 1+x -(1+\frac{x-1}{x}) + 1+\frac1{1-x} \\ & 2F(x) &=& 1+x -1-\frac{x-1}{x} + 1+\frac1{1-x} \\ & 2F(x) &=& 1+x -\frac{x-1}{x} +\frac1{1-x} \\ & 2F(x) &=& 1+x +\frac{1-x}{x} +\frac1{1-x} \\\\ & 2F(x) &=& \dfrac{(1+x)x(1-x)+(1-x)^2+x}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{(1-x^2)x+1-2x+x^2+x}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{(1-x^2)x+1-x+x^2}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{ x-x^3 +1-x+x^2}{x(1-x)} \\\\ & 2F(x) &=& \dfrac{ 1+x^2-x^3}{x(1-x)} \\\\ & F(x) &=& \dfrac{ 1+x^2-x^3}{2x(1-x)} \\\\ & \mathbf{F(x)} & \mathbf{=} & \mathbf{\dfrac{ 1+x^2-x^3}{2x - 2x^2}} \\ \hline \end{array}\)

 

graph:

 

laugh

23 мая 2018 г.
 #4
avatar+26367 
+1

Use logarithmic differentation to find the derivative of the function.

\(y=\sqrt{x}{e}^{({x}^{2})}({{x}^{2}+1})^{10}\)

y=\sqrt{x}{e}^{(x^2)}(x^2+1)^{10}

Anyone who knows how to solve for the answer and can write down the steps?

 

Formula

\(\begin{array}{|rclcl|} \hline \left(~\ln f(x)~ \right)' = \dfrac{f'(x)}{f(x)} \\ \hline \end{array} \)

 

1. logarithm of both sides

\(\begin{array}{|rcll|} \hline y &=& \sqrt{x}{e}^{(x^2)}(x^2+1)^{10} \quad & | \quad \text{$\ln()$ both sides} \\ \ln(y) &=& \ln(\sqrt{x})+\ln({e}^{(x^2)}) + \ln( (x^2+1)^{10} ) \\ \ln(y) &=& \ln(x^{\frac12})+\ln({e}^{(x^2)}) + \ln( (x^2+1)^{10} ) \quad & | \quad \text{Formula: $\ln(a^b) = b\ln(a) $} \\ \ln(y) &=& \frac12\ln(x)+x^2\ln(e) + 10\ln(x^2+1) \quad & | \quad \text{Formula: $\ln(e) = 1 $} \\ \ln(y) &=& \frac12\ln(x)+x^2 + 10\ln(x^2+1) \\ \hline \end{array}\)

 

2. derivation of both sides

\(\begin{array}{|rcll|} \hline \ln(y) &=& \frac12\ln(x)+x^2 + 10\ln(x^2+1) \quad & | \quad \text{derivate both sides} \\ \Big(\ln(y)\Big)' &=& \left(\frac12\ln(x) \right)' + \left(x^2 \right)' + \left(10\ln(x^2+1) \right)' \\\\ \dfrac{y'}{y} &=& \frac12\cdot \frac1x + 2x + 10\cdot \frac{2x}{x^2+1} \\\\ \dfrac{y'}{y} &=& \frac{1}{2x} + 2x + \frac{20x}{x^2+1} \quad & | \quad \cdot y \\\\ y' &=& y\cdot \left( \frac{1}{2x} + 2x + \frac{20x}{x^2+1} \right) \quad & | \quad y = \sqrt{x}e^{(x^2)}(x^2+1)^{10} \\\\ y' &=& \sqrt{x}e^{(x^2)}(x^2+1)^{10} \cdot \left( \frac{1}{2x} + 2x + \frac{20x}{x^2+1} \right) \\\\ y' &=& x^{\frac12}e^{(x^2)}(x^2+1)^{10} \cdot \left( \frac{1}{2x} + 2x + \frac{20x}{x^2+1} \right) \\\\ y' &=& \frac{ x^{\frac12}{e}^{(x^2)}(x^2+1)^{10} }{2x} + x^{\frac12}e^{(x^2)}(x^2+1)^{10} \cdot 2x \\ &+& x^{\frac12}e^{(x^2)}(x^2+1)^{10} \cdot \frac{20x}{x^2+1} \\\\ y' &=& \frac{ e^{(x^2)}(x^2+1)^{10} }{2x^{1-\frac12}} + 2{e}^{(x^2)}x^{\frac12+1}(x^2+1)^{10}\\ &+& 20e^{(x^2)} x^{\frac12+1}(x^2+1)^{10} \cdot \frac{1}{(x^2+1)^1} \\\\ y' &=& \frac{ e^{(x^2)}(x^2+1)^{10} }{2x^{\frac12}} + 2{e}^{(x^2)}x^{\frac32}(x^2+1)^{10}\\ &+& 20e^{(x^2)} x^{\frac32}(x^2+1)^{10-1} \\\\ y' &=& \frac{ e^{(x^2)}(x^2+1)^{10} }{2\sqrt{x}} + 2{e}^{(x^2)}x^{\frac32}(x^2+1)^{10}\\ &+& 20e^{(x^2)} x^{\frac32}(x^2+1)^{9} \\ \hline \end{array} \)

 

\(\begin{array}{rcll} \mathbf{ y' } & \mathbf{=} & \mathbf{ \dfrac{ e^{(x^2)}(x^2+1)^{10} }{2\sqrt{x}} + 2{e}^{(x^2)}x^{\frac32}(x^2+1)^{10} + 20e^{(x^2)} x^{\frac32}(x^2+1)^{9} } \\ \end{array} \)

 

laugh

23 мая 2018 г.
 #3
avatar+26367 
+2

Jenny's grandmother has 24 cats.

Seventeen of the cats do not catch mice.

Ten of the cats have black fur.

What is the smallest possible number of cats that do not catch mice that have black fur?

 

\(\large{1.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & & x & \color{red} 10 \\ \hline \overline{\text{black fur}} & & & \small{24-10} \\ \hline & \small{24-17}& \color{red}17 & \color{red}24 \\ \end{array}\)

 

\(\large{2.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ \hline \overline{\text{black fur}} & \small{7-(10-x) =} & \small{17-x} & 14 \\ & \small{x-3 } & & \\ \hline & 7 & 17 & 24 \\ \end{array} \)

 

\(\large{3.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ & \small{\text{min: } 10-x=0 } & & \\ & \Rightarrow x_{min} = \color{red}10 & & \\ \hline \overline{\text{black fur}} & \small{x-3 } & \small{17-x} & 14 \\ & \small{\text{min: } x-3=0} & \small{\text{min: } 17-x=0 } & \\ & \Rightarrow x_{min} = \color{red}3 & \Rightarrow x_{min} = \color{red}17 \\ \hline & 7 & 17 & 24 \\ \end{array}\)

 

\(\large{4.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{10-x } & x & 10 \\ & \Rightarrow x_{min} = \color{red}10 & = min({\color{red}10},{\color{red}3},{\color{red}17}) & \\ & & = 3 & \\ \hline \overline{\text{black fur}} & \small{x-3 } & \small{17-x} & 14 \\ & \Rightarrow x_{min} = \color{red}3 & \Rightarrow x_{min} = \color{red}17 \\ \hline & 7 & 17 & 24 \\ \end{array} \)

 

\(\large{5.} \\ \begin{array}{r|r|r|r} & \text{mice} & \overline{\text{mice}} \\ \hline \text{black fur} & \small{7 } & \color{red}3 & 10 \\ \hline \overline{\text{black fur}} & \small{0 } & \small{14} & 14 \\ \hline & 7 & 17 & 24 \\ \end{array}\)

 

laugh

17 мая 2018 г.