heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2

Let {a_n} is a 3rd order arithmetic sequence. The first couple of terms are: 4, 16, 42, 88.
Please determine the general formula of {a_n}

 

\(\begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 4} && 16 && 42 && 88 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 12} && 26 && 46 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 14} && 20 && \cdots \\ \text{3. Difference } &&&& {\color{red}d_3 = 6} && \cdots \\ \end{array}\)

 

\(\begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } + \binom{n-1}{3}\cdot {\color{red}d_3 } \\\\ a_n &=& \binom{n-1}{0}\cdot {\color{red} 4 } + \binom{n-1}{1}\cdot {\color{red}12} + \binom{n-1}{2}\cdot {\color{red}14} + \binom{n-1}{3}\cdot {\color{red} 6} \\\\ \hline \binom{n-1}{0} &=& 1 \\ \binom{n-1}{1} &=& n-1 \\ \binom{n-1}{2} &=& \left( \frac{n-1}{2} \right) \cdot \left( \frac{n-2}{1} \right) \\ \binom{n-1}{3} &=& \left( \frac{n-1}{3} \right) \cdot \left(\frac{n-2}{2} \right) \cdot \left( \frac{n-3}{1} \right) \\ \hline \\ a_n &=& {\color{red}4 } + (n-1)\cdot {\color{red}12} + \left( \frac{n-1}{2} \right) \cdot \left( \frac{n-2}{1} \right)\cdot {\color{red}14} + \left( \frac{n-1}{3} \right) \cdot \left(\frac{n-2}{2} \right) \cdot \left( \frac{n-3}{1} \right)\cdot {\color{red}6} \\\\ &=& 4 + (n-1)\cdot 12 +(n-1)(n-2) \cdot 7 + (n-1)(n-2)(n-3) \\\\ &=& 4 + 12n-12 + (7n-7)(n-2) + (n-1)(n-2)(n-3) \\\\ &=& -8 + 12n + 7n^2-21n +14 + (n-1)(n-2)(n-3) \\\\ &=& 6 - 9n + 7n^2 + (n-1)(n-2)(n-3) \\\\ &=& 6 - 9n + 7n^2 + (n-1)(n^2-5n+6) \\\\ &=& 6 - 9n + 7n^2 + n^3-5n^2+6n-n^2+5n-6 \\\\ \mathbf{a_n} &=& \mathbf{2n + n^2 + n^3} \\ \end{array} \)

 

laugh

14 авг. 2018 г.