heureka

avatar
Имя пользователяheureka
Гол26376
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26376 
+4

When I run up a staircase, my stride can carry me up 1, 2, or 3 steps at a time. In how many ways can I run up a 9-step staircase (given that my last stride lands me on the 9th step)?

 

Let \(T_n\) be the number of ways to climb n stairs taking only 1 or 2 or 3 steps:

 

\(\begin{array}{|rcll|} \hline T_n &=& \mathcal{T}_{n+2} \qquad \mathcal{T} \text{ is the Tribonacci number } \\\\ && \text{case of n=9 steps}: \\\\ T_{9} &=& \mathcal{T}_{11} \qquad \\ && \mathcal{T}_0 = 0 \\ && \mathcal{T}_1 = 0 \\ && \mathcal{T}_2 = 1 \\ && \mathcal{T}_3 = 1 \\ && \mathcal{T}_4 = 2 \\ && \mathcal{T}_5 = 4 \\ && \mathcal{T}_6 = 7 \\ && \mathcal{T}_7 = 13\\ && \mathcal{T}_8 = 24\\ && \mathcal{T}_9 = 44\\ && \mathcal{T}_{10} = 81\\ && \mathcal{T}_{11} = 149\\ && \mathcal{T}_{12} = 274\\ && \ldots \\ T_{9} &=& 149 \\ \hline \end{array}\)

 

Source: http://oeis.org/search?q=1%2C2%2C4%2C7%2C13%2C24%2C&sort=&language=english&go=Search

"Tribonacci numbers: \(a(n) = a(n-1) + a(n-2) + a(n-3) \text{ with } a(0)=a(1)=0, a(2)=1\)."

"a(n) = number of compositions of n-2 with no part greater than 3.

Example: a(5)=4 because we have \(1+1+1 = 1+2 = 2+1 = 3\).

\(\ldots\)

\(a(n+1) = \dfrac{3*c*\left((1/3)*(a+b+1)\right)^n}{c^2-2*c+4}\) where
\(a=(19+3*\sqrt{33})^{1/3}\),
\(b=(19-3*\sqrt{33})^{1/3}\),
\(c=(586+102*\sqrt{33})^{1/3}\).
Round off to the nearest integer.
"

 

Example:

\(\begin{array}{|rcll|} \hline T_{9} = a(11)& =& \dfrac{3*c*\left((1/3)*(a+b+1)\right)^{10}}{c^2-2*c+4} \\ a=(19+3*\sqrt{33})^{1/3}& =& 3.30905647997\ldots \\ b=(19-3*\sqrt{33})^{1/3}& =& 1.20880378568\ldots \\ c=(586+102*\sqrt{33})^{1/3}& =& 10.5431194025\ldots \\ T_{9} & =& \frac{3*10.5431194025*\left((1/3)*(3.30905647997+1.20880378568+1)\right)^{10}}{10.5431194025^2-2*10.5431194025+4} \\ & =& \frac{14,014.7325577}{94.0711279297} \\ & =& 148.980169220 \\ \mathbf{T_{9}} & \mathbf{=}& \mathbf{149} \\ \hline \end{array} \)

 

laugh

22 авг. 2018 г.
 #2
avatar+26376 
+3

Part a)
In this multi-part problem, we will consider this system of simultaneous equations:

 

\(\begin{array}{lcr} 3x + 5y - 6z &=& 2 \\ 5xy - 10yz - 6xz &=& -41 \\ xyz &=& 6 \\ \end{array}\)

 

\(\text{Let $a = 3x$, $b = 5y$, and $c = -6z.$}\)

 

Determine the monic cubic polynomial in terms of a variable \(t\) whose roots are \(a\), \(b\), and \(c\).
Make sure to enter your answer in terms of \(t\) and only \(t\), in expanded form.

 

\(\begin{array}{|rcll|} \hline (t-a)(t-b)(t-c) &=& 0 \quad | \quad a=3x, \quad b = 5y \quad c=-6z \\ \left(t^2-t(a+b)+ab\right)(t-c) &=& 0 \\ t^3-t^2c-t^2(a+b)+t(a+b)c+tab-abc &=& 0 \\ t^3-t^2(a+b+c)+t(ac+bc+ab)-abc &=& 0 \\ \\ \hline a+b+c &=& 3x + 5y -6z \\ &=& 2 \\ \\ \hline ac+bc+ab &=& -18xz-30yz+15xy \\ &=& 3\cdot(5xy-10yz-6xz) \\ &=& 3\cdot(-41) \\ &=& -123 \\ \\ \hline abc &=& 3x5y(-6z) \\ &=& -90xyz \\ &=& -90\cdot 6 \\ &=& -540 \\ \\ \hline t^3-t^2(a+b+c)+t(ac+bc+ab)-abc &=& 0 \\ t^3-t^2\cdot 2+t(123)-(-540) &=& 0 \\ \mathbf{t^3-2t^2 -123t +540} & \mathbf{=} & \mathbf{0} \\ \text{The roots are } t_1 = -12, t_2 = 5, t_3 = 9 \\ \hline \end{array}\)

 

 

Part b)
Given that \((x,y,z)\) is a solution to the original system of equations,

determine all distinct possible values of \(x+y\).

 

Roots are \(a\), \(b\), and \(c\)

 

\(\mathbf{x =\ ?}\)

\(\begin{array}{|rcll|} \hline a = 3x_1 &=& t_1 \\ 3x_1 &=& -12 \\ x_1 &=& -4 \\ \\ a = 3x_2 &=& t_2 \\ 3x_2 &=& 5 \\ x_2 &=& \frac53 \\\\ a = 3x_3 &=& t_3 \\ 3x_3 &=& 9 \\ x_3 &=& 3 \\\\ \hline x &=& \{-4,\frac53,3 \} \\ \hline \end{array} \)

 

\(\mathbf{y =\ ?}\)

\(\begin{array}{|rcll|} \hline b = 5y_1 &=& t_1 \\ 5y_1 &=& -12 \\ y_1 &=& -\frac{12}{5} \\ \\ b = 5y_2 &=& t_2 \\ 5y_2 &=& 5 \\ y_2 &=& 1 \\\\ b = 5y_3 &=& t_3 \\ 5y_3 &=& 9 \\ y_3 &=& \frac95 \\\\ \hline y &=& \{-\frac{12}{5},1,\frac95 \} \\ \hline \end{array}\)

 

\(\mathbf{z =\ ?}\)

\(\begin{array}{|rcll|} \hline c = -6z &=& t_1 \\ -6z &=& -12 \\ z_1 &=& 2 \\ \\ c = -6z &=& t_2 \\ -6z &=& 5 \\ z_2 &=& -\frac{5}{6} \\\\ c = -6z &=& t_3 \\ -6z &=& 9 \\ z_3 &=& -\frac32 \\\\ \hline z &=& \{2,-\frac{5}{6},-\frac32 \} \\ \hline \end{array}\)

 

Solutions:

\(\begin{array}{|r|r|r|r|} \hline x & y & z & \text{all distinct possible values of } x+y \\ \hline -4 & 1& -\frac32 & -3 \\ \hline -4 & \frac95& -\frac56 & -2.2 \\ \hline \frac53&-\frac{12}{5}& -\frac32 & -\frac{11}{15} \\ \hline \frac53& \frac95& 2 & \frac{52}{15} \\ \hline 3&-\frac{12}{5}& -\frac56 & \frac35 \\ \hline 3& 1& 2 & 4 \\ \hline \end{array}\)

 

laugh

21 авг. 2018 г.