heureka

avatar
Имя пользователяheureka
Гол26376
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26376 
+3

Zan has created this iterative rule for generating sequences of whole numbers:


1) If a number is 25 or less, double the number.
2) If a number is greater than 25, subtract 12 from it.

 

Let F be the first number in a sequence generated by the rule above.

F is a "sweet number" if 16 is not a term in the sequence that starts with F.
How many of the whole numbers 1 through 50 are "sweet numbers"?

 

 1 -> 2 -> 4 -> 8 -> 16
 2 -> 4 -> 8 -> 16
 3 -> 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
 4 -> 8 -> 16
 5 -> 10 -> 20 -> 40 -> 28 -> 16
 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
 7 -> 14 -> 28 -> 16
 8 -> 16
 9 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 10 -> 20 -> 40 -> 28 -> 16
 11 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 12 -> 24 -> 48 -> 36 -> 24 sweet number
 13 -> 26 -> 14 -> 28 -> 16
 14 -> 28 -> 16
 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 16 -> 32 -> 20 -> 40 -> 28 -> 16
 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 18 -> 36 -> 24 -> 48 -> 36 sweet number
 19 -> 38 -> 26 -> 14 -> 28 -> 16
 20 -> 40 -> 28 -> 16
 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 24 -> 48 -> 36 -> 24 sweet number
 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 26 -> 14 -> 28 -> 16
 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 28 -> 16
 29 -> 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 31 -> 19 -> 38 -> 26 -> 14 -> 28 -> 16
 32 -> 20 -> 40 -> 28 -> 16
 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 35 -> 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 36 -> 24 -> 48 -> 36 sweet number
 37 -> 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 38 -> 26 -> 14 -> 28 -> 16
 39 -> 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 40 -> 28 -> 16
 41 -> 29 -> 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 43 -> 31 -> 19 -> 38 -> 26 -> 14 -> 28 -> 16
 44 -> 32 -> 20 -> 40 -> 28 -> 16
 45 -> 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 47 -> 35 -> 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 48 -> 36 -> 24 -> 48 sweet number
 49 -> 37 -> 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 50 -> 38 -> 26 -> 14 -> 28 -> 16

 

There are 16 sweet number:
  3 -> 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
  6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
  9 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 12 -> 24 -> 48 -> 36 -> 24 sweet number
 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 18 -> 36 -> 24 -> 48 -> 36 sweet number
 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 24 -> 48 -> 36 -> 24 sweet number
 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 36 -> 24 -> 48 -> 36 sweet number
 39 -> 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 45 -> 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 48 -> 36 -> 24 -> 48 sweet number

 

laugh

25 июл. 2019 г.
 #1
avatar+26376 
+3

"Modulo \(m\) graph paper" consists of a grid of \(m^2\) points, representing all pairs of integer residues \((x,y)\) where \((0\le x)\) .
To graph a congruence on modulo m graph paper, we mark every point \((x,y)\) that satisfies the congruence.
For example, a graph of \(y\equiv x^2\pmod 5\)  would consist of the points \((0,0),\ (1,1),\ (2,4),\ (3,4),\ \text{and}\ (4,1)\).

 

The graph of
\(3x\equiv 4y-1 \pmod{35}\)
has a single x-intercept \((x_0,0)\)  and a single y-intercept \((0, y_0)\), where \(0\le x_0,y_0<35\).

 

What is the value of \(x_0+y_0\)?

 

\(\begin{array}{|lrclrcl|} \hline P(x_0,\ 0): & 3x &\equiv& 4y-1 \pmod{35} \\ & 3x_0 &\equiv& 4\cdot 0 -1 \pmod{35} \\ & 3x_0 &\equiv& -1 \pmod{35} \\\\ & 3x_0 &=& -1 +35n \quad n\in \mathbb{Z} \\ & x_0 &=& \dfrac{-1 +35n} {3} \\ & x_0 &=& \dfrac{-1 +36n-n} {3} \\ & x_0 &=& 12n-\underbrace{\dfrac{1+n} {3}}_{=a}\quad a\in \mathbb{Z} \\ & x_0 &=& 12n-a & a&=& \dfrac{1+n} {3} \\ & & & & 3a&=& 1+n \\ & & & &\mathbf{ n}&=&\mathbf{ 3a-1} \\ & x_0 &=& 12(3a-1)-a \\ & x_0 &=& 36a-12-a \\ & x_0 &=& -12+35a \\\\ & x_0&\equiv& -12 \pmod{35} \\ & x_0&\equiv& 35 -12 \pmod{35} \\ & x_0&\equiv& 23 \pmod{35} \\ & \mathbf{x_0}&=& \mathbf{23} \qquad 0\leq x_0 < 35\\ \hline \end{array}\)

\(\begin{array}{|lrclrcl|} \hline P(0,\ y_0): & 3x &\equiv& 4y-1 \pmod{35} \\ & 0 &\equiv& 4y_0 -1 \pmod{35} \quad | \quad \cdot (-1) \\ & 0 &\equiv& -4y_0 +1 \pmod{35} \\ \\ & 0 &=& -4y_0 +1 +35n \quad n\in \mathbb{Z} \quad | \quad +4y_0 \\ & 4y_0 &=& 1 +35n \quad | \quad : 4 \\ & y_0 &=& \dfrac{1 +35n} {4} \\ & y_0 &=& \dfrac{1 +36n-n} {4} \\ & y_0 &=& 9n+\underbrace{\dfrac{1-n} {4}}_{=a}\quad a\in \mathbb{Z} \\ & y_0 &=& 9n+a & a&=& \dfrac{1-n} {4} \\ & & & & 4a&=& 1-n \\ & & & &\mathbf{ n}&=&\mathbf{ 1-4a} \\ & y_0 &=& 9(1-4a)+a \\ & y_0 &=& 9-36a+a \\ & y_0 &=& 9-35a \\\\ & y_0&\equiv& 9 \pmod{35} \\ & \mathbf{y_0}&=& \mathbf{9} \qquad 0\leq y_0 < 35\\ \hline \end{array}\)

 

\(\mathbf{x_0 + y_0} = 23+9 \mathbf{=32}\)

 

laugh

25 июл. 2019 г.
 #2
avatar+26376 
+4

 OSL4#13

 

\(\text{Let the number of nickels $=n$, $1$ nickel $= 5 $ cent } \\ \text{Let the number of dimes $=d$, $1$ dime $= 10 $ cent } \\ \text{Let the number of quaters $=q$, $1$ quater $= 25$ cent }\)

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{ n+d+q } &=& \mathbf{30} \\\\ & 5n+10d+25q &=& 500 \qquad \text{in cents}\quad &| \quad : 5 \\ (2) & \mathbf{ n+2d+ 5q } &=& \mathbf{100} \\ \hline (2)-(1): & n+2d+ 5q -(n+d+q) &=& 100-30 \\ & n+2d+ 5q -n-d-q &=& 70 \\ & d+ 4q &=& 70 \quad &| \quad -4q \\ (3)& \mathbf{ d } &=& \mathbf{70- 4q} \\ \hline & n+d+q &=& 30 \\ &n&=& 30-d-q \quad &| \quad d =70- 4q \\ &n&=& 30-(70- 4q)-q \\ &n&=& 30-70+ 4q-q \\ (4)& \mathbf{ n } &=& \mathbf{-40+ 3q} \\ \hline \end{array} \)

 

\(\mathbf{d \geq 0}\)

\(\begin{array}{|rcll|} \hline 70- 4q &\geq& 0\quad &| \quad + 4q \\ 70 &\geq& 4q \quad &| \quad : 4 \\ \dfrac{70}{4} &\geq& q \\ q &\leq& \dfrac{70}{4} \\ q &\leq& 17.50 \\ \mathbf{q} &\leq& \mathbf{17} \\ \hline \end{array}\)

 

\(\mathbf{n \geq 0}\)

\(\begin{array}{|rcll|} \hline -40+ 3q &\geq& 0 \quad &| \quad +40 \\ 3q &\geq& 40 \quad &| \quad : 3 \\ q &\geq& \dfrac{40}{3} \\ q &\geq& 13.3333333333 \\ \mathbf{q} &\geq& \mathbf{14} \\ \hline \end{array} \)

 

\(\mathbf{14\leq q \leq 17 } \qquad q=\{14,\ 15,\ 16,\ 17 \} \)

There are 4 different combinations.

 

The combinations:

\(\begin{array}{|c|c|c|} \hline \text{q (Quaters)} & d=70- 4q \text{ (dimes)} & n=3q-40 \text{ (nickels)} \\ \hline 14 & 14 & 2 \\ 15 & 10 & 5 \\ 16 & 6 & 8 \\ 17 & 2 &11 \\ \hline \end{array}\)

 

laugh

24 июл. 2019 г.