heureka

avatar
Имя пользователяheureka
Гол26376
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26376 
+4

A fair six-sided number cube with the digits 1-6 on its faces is rolled three times.
The positive difference between the values on the first two rolls is equal to the value of the third roll.
What is the probability that at least one 3 was rolled?
Express your answer as a common fraction.

 

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 1} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(0) & \text{_ _ _ _ _ _} \\ & 2~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & {\color{red}3}~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 4~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 5~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & 6~(5) & \text{_ _ _ _ $\color{blue}x$ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{2} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 2~(0) & \text{_ _ _ _ _ _} \\ & {\color{red}3}~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 4~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & 5~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 6~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ {\color{red}3}} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 2~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & {\color{red}3}~(0) & \text{_ _ _ _ _ _} \\ & 4~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 5~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 6~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 4} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 2~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & {\color{red}3}~(1) & \text{$\color{red}x$_ _ _ _ _} \\ & 4~(0) & \text{_ _ _ _ _ _} \\ & 5~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 6~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 5} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & 2~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & {\color{red}3}~(2) & \text{_ $\color{red}x$ _ _ _ _} \\ & 4~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 5~(0) & \text{_ _ _ _ _ _} \\ & 6~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ \hline \end{array} \begin{array}{|c|c|c|c|} \hline \text{first roll} & \text{second roll} & \text{third roll} \\ \mathbf{ 6} & (\text{difference}) &\text{1 2 $\color{red}3$ 4 5 6} \\ \hline & 1~(5) & \text{_ _ _ _ $\color{blue}x$ _} \\ & 2~(4) & \text{_ _ _ $\color{blue}x$ _ _} \\ & {\color{red}3}~(3) & \text{_ _ $\color{red}x$ _ _ _} \\ & 4~(2) & \text{_ $\color{blue}x$ _ _ _ _} \\ & 5~(1) & \text{$\color{blue}x$_ _ _ _ _} \\ & 6~(0) & \text{_ _ _ _ _ _} \\ \hline \end{array}\)

 

The probability that at least one 3 was rolled is \(\mathbf{ \dfrac{14\ {\color{red}x} }{30\ {\color{blue}x} } = \dfrac{7}{15} }\)

 

laugh

28 июл. 2019 г.
 #3
avatar+26376 
+1
28 июл. 2019 г.
 #2
avatar+26376 
+3

For each positive integer n,
the set of integers \(\{0,\ 1,\ 2,\ \ldots \,\ n-1 \}\) is known as the residue system modulo n.
Within the residue system modulo \(2^4\),
let A be the sum of all invertible integers modulo \(2^4\) and
let B be the sum all of non-invertible integers modulo \(2^4\).
What is A-B?

 

The integer s of the set is invertible, if \(gcd(2^4,s)=1\)

\(\begin{array}{|c|c|c|l|} \hline \text{set of integers} & gcd(2^4,s) & \text{not invertible} & \text{modulo inverse} \\ \hline 0 & 16 & \checkmark \\ \hline 1 & 1 && 1^{-1} \pmod{16} = 1 \quad |\quad 1\cdot 1 \equiv 1 \pmod{16} \\ \hline 2 & 2 & \checkmark \\ \hline 3 & 1 && 3^{-1} \pmod{16} = 11 \quad |\quad 3\cdot 11 \equiv 1 \pmod{16} \\ \hline 4 & 4 & \checkmark \\ \hline 5 & 1 && 5^{-1} \pmod{16} = 13 \quad |\quad 5\cdot 13 \equiv 1 \pmod{16} \\ \hline 6 & 2 & \checkmark \\ \hline 7 & 1 && 7^{-1} \pmod{16} = 7 \quad |\quad 7\cdot 7 \equiv 1 \pmod{16} \\ \hline 8 & 8 & \checkmark \\ \hline 9 & 1 && 9^{-1} \pmod{16} = 9 \quad |\quad 9\cdot 9 \equiv 1 \pmod{16} \\ \hline 10 & 2 & \checkmark \\ \hline 11 & 1 && 11^{-1} \pmod{16} = 3 \quad |\quad 11\cdot 3 \equiv 1 \pmod{16} \\ \hline 12 & 4 & \checkmark \\ \hline 13 & 1 && 13^{-1} \pmod{16} = 5 \quad |\quad 13\cdot 5 \equiv 1 \pmod{16} \\ \hline 14 & 2 & \checkmark \\ \hline 15 & 1 && 15^{-1} \pmod{16} = 15 \quad |\quad 15\cdot 15 \equiv 1 \pmod{16} \\ \hline \hline \end{array}\)

 

\( A = 1+3+5+7+9+11+13+15 = \mathbf{64} \\ B = 0+2+4+6+8+10+12+14 = \mathbf{56}\)

 

 

laugh

27 июл. 2019 г.
 #2
avatar+26376 
+4

Two positive numbers \(p\) and \(q\) have the property that their sum is equal to their product.
If their difference is \(7\), what is \(\dfrac{1}{\dfrac{1}{p^2}+\dfrac{1}{q^2}}\)?


Your answer will be of the form \(\dfrac{a+b\sqrt{c}}{d}\),


where \(a\) and \(b\) don't both share the same common factor with \(d\) and \(c\) has no square as a factor.


Find \(a+b+c+d\).

 

\(\begin{array}{|lrcll|} \hline &\mathbf{p+q} &=& \mathbf{pq} \quad | \quad :pq \\\\ &\dfrac{1}{q} + \dfrac{1}{p} &=& 1 \\ &\left(\dfrac{1}{q} + \dfrac{1}{p}\right)^2 &=& 1^2 \\ & \dfrac{1}{q^2} + \dfrac{1}{p^2} + \dfrac{2}{pq} &=& 1 \\ (1)& \mathbf{ \dfrac{1}{q^2} + \dfrac{1}{p^2}} &=& \mathbf{ 1-\dfrac{2}{pq}} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline &\mathbf{p-q} &=& \mathbf{7} \quad | \quad :pq \\\\ &\dfrac{1}{q} - \dfrac{1}{p} &=& \dfrac{7}{pq} \\ &\left(\dfrac{1}{q} - \dfrac{1}{p}\right)^2 &=& \dfrac{49}{(pq)^2} \\ & \dfrac{1}{q^2} + \dfrac{1}{p^2} - \dfrac{2}{pq} &=& \dfrac{49}{(pq)^2} \\ (2)& \mathbf{ \dfrac{1}{q^2} + \dfrac{1}{p^2}} &=& \mathbf{ \dfrac{49}{(pq)^2}+\dfrac{2}{pq}} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1)=(2): & \dfrac{1}{q^2} + \dfrac{1}{p^2} = 1-\dfrac{2}{pq} &=& \dfrac{49}{(pq)^2}+\dfrac{2}{pq} \\\\ & 1-\dfrac{2}{pq} &=& \dfrac{49}{(pq)^2}+\dfrac{2}{pq} \\\\ & 1-\dfrac{4}{pq} &=& \dfrac{49}{(pq)^2} \quad | \quad \cdot (pq)^2 \\\\ & (pq)^2-4(pq) &=& 49 \\\\ & (pq)^2-4(pq) -49 &=& 0 \\\\ & (pq) &=& \dfrac{4 \pm \sqrt{16-4\cdot (-49) } } {2} \\ & (pq) &=& \dfrac{4 \pm \sqrt{212} } {2} \\ & (pq) &=& \dfrac{4 \pm \sqrt{53} } {2} \\ & (pq) &=&2 \pm \sqrt{53} \\\\ (3) & \mathbf{(pq)_1} &=& \mathbf{2 + \sqrt{53}} \\ (4) & \mathbf{(pq)_2} &=& \mathbf{2 - \sqrt{53}} \\ \hline \end{array}\)

 

\(\mathbf{(pq)_1 = 2 + \sqrt{53}}\):

\(\begin{array}{|rcll|} \hline \mathbf{ \dfrac{1}{p^2} + \dfrac{1}{q^2}} &=& \mathbf{ 1-\dfrac{2}{(pq)_1}} \\\\ \dfrac{1}{p^2} + \dfrac{1}{q^2} &=& \dfrac{(pq)_1-2}{(pq)_1} \\\\ x=\dfrac{1}{\dfrac{1}{p^2} + \dfrac{1}{q^2}} &=& \dfrac{(pq)_1}{(pq)_1-2} \\\\ x &=& \dfrac{2 + \sqrt{53}}{2 + \sqrt{53}-2} \\\\ x &=& \left( \dfrac{2 + \sqrt{53}}{ \sqrt{53} } \right)\cdot \dfrac{\sqrt{53}}{\sqrt{53}} \\\\ \mathbf{x} &=& \mathbf{\dfrac{53+2\sqrt{53}}{ 53 }} \quad | \quad \dfrac{a+b\sqrt{c}}{d} \\ && a=53,\ b=2,\ c=53,\ d=53 \\ && \mathbf{a+b+c+d} = 53+2+53+53 &=& \mathbf{ 161 } \\ \hline \end{array} \)

 

\(\mathbf{(pq)_2 = 2 - \sqrt{53}}\):

\(\begin{array}{|rcll|} \hline \mathbf{ \dfrac{1}{p^2} + \dfrac{1}{q^2}} &=& \mathbf{ 1-\dfrac{2}{(pq)_2}} \\\\ \dfrac{1}{p^2} + \dfrac{1}{q^2} &=& \dfrac{(pq)_2-2}{(pq)_2} \\\\ x=\dfrac{1}{\dfrac{1}{p^2} + \dfrac{1}{q^2}} &=& \dfrac{(pq)_2}{(pq)_2-2} \\\\ x &=& \dfrac{2 - \sqrt{53}}{2 - \sqrt{53}-2} \\\\ x &=& \dfrac{2 - \sqrt{53}}{ - \sqrt{53} } \\\\ x &=& \left( \dfrac{-2 + \sqrt{53}}{ \sqrt{53} } \right)\cdot \dfrac{\sqrt{53}}{\sqrt{53}} \\\\ \mathbf{x} &=& \mathbf{\dfrac{53-2\sqrt{53}}{ 53 }} \quad | \quad \dfrac{a+b\sqrt{c}}{d} \\ && a=53,\ b=-2,\ c=53,\ d=53 \\ && \mathbf{a+b+c+d} = 53-2+53+53 &=& \mathbf{ 157 } \\ \hline \end{array}\)

 

laugh

26 июл. 2019 г.