heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #4
avatar+26398 
+2
2 окт. 2019 г.
 #2
avatar+26398 
+2

What is the sum of the following sequence:

\(1^{-6} + 3^{-6} + 5^{-6} + 7^{-6} + 9^{-6} + \ldots\) to infinity.

 

\(\begin{array}{|rcll|} \hline 1^{-6} + 3^{-6} + 5^{-6} + 7^{-6} + 9^{-6} + \ldots &=& 1+\dfrac{1}{3^6}+\dfrac{1}{5^6}+\dfrac{1}{7^6}+\dfrac{1}{9^6}+ \ldots \\ &=& \sum \limits_{n=0}^{\infty} \dfrac{1}{(2n+1)^6} \\ \hline \end{array}\)

 

zeta-function:

\(\begin{array}{|rcll|} \hline \zeta(s) &=& 1+\dfrac{1}{2^s}+\dfrac{1}{3^s}+\dfrac{1}{4^s}+\dfrac{1}{5^s}+ \ldots \\ \zeta(s)\left(1-\dfrac{1}{2^s} \right) &=& \left( 1+\dfrac{1}{2^s}+\dfrac{1}{3^s}+\dfrac{1}{4^s}+\dfrac{1}{5^s}+ \ldots \right) \left(1-\dfrac{1}{2^s} \right) \\ &=& \left( 1+\dfrac{1}{2^s}+\dfrac{1}{3^s}+\dfrac{1}{4^s}+\dfrac{1}{5^s}+ \ldots \right) \\ && -\left(\dfrac{1}{2^s}+\dfrac{1}{4^s}+\dfrac{1}{6^s}+\dfrac{1}{8^s} \right) \\ \mathbf{\zeta(s)\left(1-\dfrac{1}{2^s} \right) } &=& \mathbf{ 1+\dfrac{1}{3^6}+\dfrac{1}{5^6}+\dfrac{1}{7^6}+\dfrac{1}{9^6}+ \ldots } \\ \hline \end{array} \)

 

with Bernoulli numbers B:

\(\begin{array}{|lrcll|} \hline & \sum \limits_{n=0}^{\infty} \dfrac{1}{(2n+1)^s} &=& \left(1-\dfrac{1}{2^s} \right) \zeta(s) \quad &| \quad \zeta(2n) = \Big(-1\Big)^{(n-1)} \cdot \dfrac{ (2 \pi)^{2n} } {2(2n)!} B_{2n} \\ \hline s=6: & \sum \limits_{n=0}^{\infty} \dfrac{1}{(2n+1)^6} &=& \left(1-\dfrac{1}{2^6} \right) \zeta(6) \quad &| \quad \zeta(2\cdot 3) = \Big(-1\Big)^{(3-1)} \cdot \dfrac{ (2 \pi)^{2\cdot 3} } {2(2\cdot 3)!} B_{2\cdot 3} \\ & & & \quad &| \quad \zeta(6) = \Big(-1\Big)^{2} \cdot \dfrac{ (2 \pi)^{6} } {2(6)!} B_{6} \\ & & & \quad &| \quad \zeta(6) = \dfrac{ 2^6 \pi^6 } { 2\cdot 720} B_{6} \qquad B_6 = \dfrac{1}{42} \\ & & & \quad &| \quad \zeta(6) = \dfrac{ 2^6 \pi^6 } { 2\cdot 720} \cdot \dfrac{1}{42} \\ & & & \quad &| \quad \boxed{\zeta(6) = \dfrac{ \pi^6 } {945} } \\ & \sum \limits_{n=0}^{\infty} \dfrac{1}{(2n+1)^6} &=& \left(1-\dfrac{1}{2^6} \right) \dfrac{ \pi^6 } {945} \\ & \mathbf{ \sum \limits_{n=0}^{\infty} \dfrac{1}{(2n+1)^6} } &=& \mathbf{ \dfrac{ \pi^6 } {960 } } \\ \hline \end{array}\)

 

Bernoulli numbers:

 

laugh

1 окт. 2019 г.
 #4
avatar+26398 
+2
25 сент. 2019 г.
 #3
avatar+26398 
+1

​ Please help

\(\dfrac{\sec^2 \left(\dfrac{4}{x} \right)-1}{\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)} \)


\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac{\sec^2 \left(\dfrac{4}{x} \right)-1}{\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)}} \\\\ &&\qquad \boxed{\sec^2 \left(\dfrac{4}{x} \right)-1 = \dfrac{\sin^2 \left(\dfrac{4}{x} \right)}{\cos^2 \left(\dfrac{4}{x} \right)} \\~\\= \sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } \\\\ &=& \dfrac{\sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {\cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right)} \\\\ &&\qquad \boxed{ \cos \left(\dfrac{6}{x} \right)-\cos \left(\dfrac{2}{x} \right) = -2\sin \left( \dfrac{6+2}{x} \above 1pt 2 \right) \sin \left( \dfrac{6-2}{x}\above 1pt 2 \right) \\~\\= -2\sin \left(\dfrac{4}{x} \right) \sin \left(\dfrac{2}{x} \right) } \\\\ &=& \dfrac{\sin^2 \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {-2\sin \left(\dfrac{4}{x} \right) \sin \left(\dfrac{2}{x} \right)} \\\\ &=& -\dfrac{\sin \left(\dfrac{4}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &=& -\dfrac{\sin \left(2\cdot \dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &&\qquad \boxed{ \sin \left(2\cdot \dfrac{2}{x} \right) = 2 \sin \left(\dfrac{2}{x} \right)\cos \left(\dfrac{2}{x} \right) } \\\\ &=& -\dfrac{ 2 \sin \left(\dfrac{2}{x} \right)\cos \left(\dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right) } {2 \sin \left(\dfrac{2}{x} \right)} \\\\ &=& \mathbf{-\cos \left(\dfrac{2}{x} \right)\sec^2 \left(\dfrac{4}{x} \right)} \\ \hline \end{array}\)

 

 

laugh

24 сент. 2019 г.