heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #4
avatar+26398 
+1

Find the number of equilateral triangles in the grid (\(n=5\)).

 

\(a(n) = \Big\lfloor \dfrac{n(n+2)(2n+1)}{8} \Big \rfloor \)

Source:  http://oeis.org/A002717

 

\(\begin{array}{|rcll|} \hline a(5) &=& \Big\lfloor \dfrac{5(5+2)(2*5+1)}{8} \Big\rfloor \\ &=& \Big\lfloor \dfrac{5*7*11}{8} \Big\rfloor \\ &=& \lfloor 48.125 \rfloor \\ &=& \mathbf{48} \\ \hline \end{array} \)

 

laugh

18 дек. 2019 г.
 #4
avatar+26398 
+1
18 дек. 2019 г.
 #1
avatar+26398 
+2

A sequence satisifes \(a_1 = 3\) and \(a_{n + 1} = \dfrac{a_n}{a_n + 1}\) for \(n \geq 1\)

What is \( a_{14}\)?

 

\(\begin{array}{|lrcll|} \hline & \mathbf{a_{n + 1}} &=& \mathbf{\dfrac{a_n}{a_n + 1}} \\\\ & \dfrac{1}{a_{n + 1}} &=& \dfrac{a_n + 1}{a_n} \\\\ & \mathbf{\dfrac{1}{a_{n + 1}}} &=& \mathbf{1+ \dfrac{1}{a_n}} \\\\ \hline \\ & \dfrac{1}{a_{n + 2}} &=& 1+ \dfrac{1}{a_{n+1}} \quad | \quad \mathbf{\dfrac{1}{a_{n + 1}}=1+ \dfrac{1}{a_n}} \\\\ & \dfrac{1}{a_{n + 2}} &=& 1+ 1+ \dfrac{1}{a_n} \\\\ & \mathbf{\dfrac{1}{a_{n + 2}}} &=& \mathbf{2+ \dfrac{1}{a_n}} \\\\ \hline \\ & \dfrac{1}{a_{n + 3}} &=& 1+ \dfrac{1}{a_{n+2}} \quad | \quad \mathbf{\dfrac{1}{a_{n + 2}}=2+ \dfrac{1}{a_n}} \\\\ & \dfrac{1}{a_{n + 3}} &=& 1+ 2+ \dfrac{1}{a_n} \\\\ & \mathbf{\dfrac{1}{a_{n + 3}}} &=& \mathbf{3+ \dfrac{1}{a_n}} \\\\ \hline \\ & \dfrac{1}{a_{n + 4}} &=& 1+ \dfrac{1}{a_{n+3}} \quad | \quad \mathbf{\dfrac{1}{a_{n + 3}}=3+ \dfrac{1}{a_n}} \\\\ & \dfrac{1}{a_{n + 4}} &=& 1+ 3+ \dfrac{1}{a_n} \\\\ & \mathbf{\dfrac{1}{a_{n + 4}}} &=& \mathbf{4+ \dfrac{1}{a_n}} \\ \hline & \ldots \\ \hline \\ & \mathbf{\dfrac{1}{a_{n + m}}} &=& \mathbf{m+ \dfrac{1}{a_n}} \\\\ n=1,\ m=13: & \mathbf{\dfrac{1}{a_{1 + 13}}} &=& \mathbf{13+ \dfrac{1}{a_1}} \\\\ & \dfrac{1}{a_{14}} &=& 13+ \dfrac{1}{a_1} \quad | \quad a_1 =3 \\\\ & \dfrac{1}{a_{14}} &=& 13+ \dfrac{1}{3} \\\\ & \dfrac{1}{a_{14}} &=& \dfrac{3*13+1}{3} \\\\ & \dfrac{1}{a_{14}} &=& \dfrac{40}{3} \\\\ & \mathbf{ a_{14} } &=& \mathbf{\dfrac{3}{40} } \\ \hline \end{array}\)

 

 

laugh

17 дек. 2019 г.