heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+6

(b)

In the expansion of \(\left(1 + x\right)^n\), three consecutive coefficients are in the ratio \(1:7:35\).
Find the positive integer \(n\).

 

\(\begin{array}{|rcll|} \hline \mathbf{\dbinom{n}{k + 1}} &=& \dfrac{n!}{(k+1)!(n-k-1)!} \quad &| \quad k!(k+1)=(k+1)! \\\\ &=& \dfrac{1}{k+1} *\dfrac{n!}{k!(n-k-1)!} \quad &| \quad (n-k-1)!(n-k)=(n-k)! \\\\ &=& \dfrac{n-k}{k+1} * \dfrac{n!}{k!(n-k)!} \quad &| \quad \dfrac{n!}{k!(n-k)!} = \dbinom{n}{k} \\\\ &=& \mathbf{ \dfrac{n-k}{k+1} \dbinom{n}{k} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dbinom{n}{k - 1} : \dbinom{n}{k} : \dbinom{n}{k + 1} &=& 1 : 7 : 35 \\\\ &&\boxed{ \mathbf{\dbinom{n}{k - 1} = \dfrac{k}{n-k+1} \dbinom{n}{k} }\\ ~\\ \mathbf{\dbinom{n}{k + 1} = \dfrac{n-k}{k+1} \dbinom{n}{k} } } \\\\ \dfrac{k}{n-k+1} \dbinom{n}{k} : \dbinom{n}{k} : \dfrac{n-k}{k+1} \dbinom{n}{k} &=& 1 : 7 : 35 \\ \hline \dfrac{\dbinom{n}{k}}{\dfrac{k}{n-k+1} \dbinom{n}{k}} &=& \dfrac{7}{1} \\\\ \dfrac{n-k+1}{k} &=& 7 \\\\ n-k+1 &=& 7k \\ \mathbf{n} &=& \mathbf{8k -1} \qquad (1) \\ \hline \dfrac{\dfrac{n-k}{k+1} \dbinom{n}{k} } {\dbinom{n}{k}} &=& \dfrac{35}{7} \\\\ \dfrac{n-k}{k+1} &=& 5 \\\\ 5(k+1) &=& n-k \\ 5k+5 &=& n-k \\ 6k &=& n-5 \\ \mathbf{k} &=& \mathbf{ \dfrac{n-5}{6} } \qquad (2) \\ \hline n &=& 8k-1 \quad | \quad k=\dfrac{n-5}{6} \\ n &=& 8 \dfrac{(n-5)}{6}-1 \\ n &=& \dfrac{4}{3}(n-5)-1 \\ & & \dotsb \\ \mathbf{n} &=& \mathbf{23} \\\\ k &=& \dfrac{n-5}{6} \quad | \quad n=23 \\\\ k &=& \dfrac{23-5}{6} \\ & & \dotsb \\ \mathbf{k} &=& \mathbf{3} \\ \hline \dbinom{n}{k - 1} : \dbinom{n}{k} : \dbinom{n}{k + 1} &=& 1 : 7 : 35 \\\\ \dbinom{23}{2} : \dbinom{23}{3} : \dbinom{23}{4} &=& 1 : 7 : 35 \\\\ 253 : 1771 : 8855 &=& 1 : 7 : 35 \\ \hline \end{array}\)

 

laugh

8 янв. 2020 г.
 #4
avatar+26398 
+2
8 янв. 2020 г.
 #2
avatar+26398 
+2

Let \(\omega\) be a complex number such that \(\omega^5 = 1\) and \(\omega \neq 1\).
\(\dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^2}{1 + \omega^4} + \dfrac{\omega^3}{1 + \omega} + \dfrac{\omega^4}{1 + \omega^3}\).

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^2}{1 + \omega^4} + \dfrac{\omega^3}{1 + \omega} + \dfrac{\omega^4}{1 + \omega^3} } \quad | \quad \omega^4 = \dfrac{\omega^5}{\omega}=\dfrac{1}{\omega} \\\\ &=& \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^2}{1 + \dfrac{1}{\omega}} + \dfrac{\omega^3}{1 + \omega} + \dfrac{\omega^4}{1 + \omega^3} \\\\ &=& \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^3}{1 + \omega} + \dfrac{\omega^3}{1 + \omega} + \dfrac{\omega^4}{1 + \omega^3} \\\\ &=& \dfrac{2\omega^3}{1 + \omega} + \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^4}{1 + \omega^3} \quad | \quad \omega^3 = \dfrac{\omega^5}{\omega^2}=\dfrac{1}{\omega^2} \\\\ &=& \dfrac{2\omega^3}{1 + \omega} + \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^4}{1 + \dfrac{1}{\omega^2}} \\\\ &=& \dfrac{2\omega^3}{1 + \omega} + \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega^6}{1 + \omega^2} \quad | \quad \omega^6 = \omega^5 \omega=\omega \\\\ &=& \dfrac{2\omega^3}{1 + \omega} + \dfrac{\omega}{1 + \omega^2} + \dfrac{\omega}{1 + \omega^2} \\\\ &=& \dfrac{2\omega^3}{1 + \omega} + \dfrac{2\omega}{1 + \omega^2} \\\\ &=& 2\left( \dfrac{ \omega^3}{1 + \omega} + \dfrac{ \omega}{1 + \omega^2} \right) \\\\ &=& 2\left( \dfrac{ \omega^3(1 + \omega^2) + (1 + \omega)\omega}{(1 + \omega)(1 + \omega^2) } \right) \\\\ &=& 2\left( \dfrac{ \omega^5 + \omega + \omega^2 + \omega^3 }{ 1 + \omega + \omega^2 + \omega^3 } \right) \quad | \quad \omega^5 = 1 \\\\ &=& 2\left( \dfrac{ 1 + \omega + \omega^2 + \omega^3 }{ 1 + \omega + \omega^2 + \omega^3 } \right) \\\\ &=& \mathbf{2} \\ \hline \end{array}\)

 

laugh

8 янв. 2020 г.
 #7
avatar+26398 
+4
6 янв. 2020 г.
 #5
avatar+26398 
+2
6 янв. 2020 г.