heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

Suppose that f is a Mobius transformation such that \(f(1)=i\), \(f(i)=-1\), and \(f(-1)=1\).
Find the value of \(f(-i)\).

Möbius transformation: \(w={\dfrac {az+b}{cz+d}}\) of one complex variable z; here the coefficients a, b, c, d are complex number.

\( a=\det {\begin{pmatrix}z_{1}w_{1}&w_{1}&1\\z_{2}w_{2}&w_{2}&1\\z_{3}w_{3}&w_{3}&1\end{pmatrix}}\, \\ b=\det {\begin{pmatrix}z_{1}w_{1}&z_{1}&w_{1}\\z_{2}w_{2}&z_{2}&w_{2}\\z_{3}w_{3}&z_{3}&w_{3}\end{pmatrix}}\, \\ c=\det {\begin{pmatrix}z_{1}&w_{1}&1\\z_{2}&w_{2}&1\\z_{3}&w_{3}&1\end{pmatrix}}\, \\ d=\det {\begin{pmatrix}z_{1}w_{1}&z_{1}&1\\z_{2}w_{2}&z_{2}&1\\z_{3}w_{3}&z_{3}&1\end{pmatrix}}\)

Source: https://en.wikipedia.org/wiki/M%C3%B6bius_transformation

 

\(\begin{array}{|rll|} \hline f(z)=w \\ \hline f(1)=i: & z_1=1 & w_1 =i \\ f(i)=-1: & z_2=i & w_2 = -1 \\ f(-1)=1: & z_3=-1 & w_3 = 1 \\ \hline \end{array} \)

 

\(\begin{array}{|lcll|} \hline a= \begin{vmatrix}i&i&1\\-i&-1&1\\-1&1&1\end{vmatrix}&=& -4i-2 \\\\ b= \begin{vmatrix}i&1&i\\-i&i&-1\\-1&-1&1\end{vmatrix}&=& -2 \\\\ c= \begin{vmatrix}1&i&1\\i&-1&1\\-1&1&1\end{vmatrix}&=& -2 \\\\ d= \begin{vmatrix}i&1&1\\-i&i&1\\-1&-1&1\end{vmatrix}&=& 4i-2 \\ \hline \end{array} \)

 

\(\begin{array}{|rll|} \hline f(z)=w &=& \dfrac {az+b}{cz+d} \\\\ \mathbf{f(z)} &=& \mathbf{\dfrac {(-4i-2)z-2}{(-2)z+(4i-2)}} \\ \hline \\ f(-i) &=& \dfrac {(-4i-2)(-i)-2}{(-2)(-i)+(4i-2)} \\\\ &=& \dfrac {4i^2+2i-2}{2i+4i-2} \quad | \quad i^2 = -1 \\\\ &=& \dfrac {-4+2i-2}{6i-2} \\\\ &=& \dfrac { 2i-6}{6i-2} \\\\ &=& \dfrac { 2(i-3)}{2(3i-1)} \\\\ &=& \dfrac { (i-3)}{ (3i-1)}*\dfrac{(3i+1)}{(3i+1)} \\\\ &=& \dfrac {3i^2+i-9i-3}{9i^2-1} \\\\ &=& \dfrac {-3+i-9i-3}{-9-1} \\\\ &=& \dfrac {-6-8i}{-10} \\\\ &=& \dfrac {6+8i}{10} \\\\ &=& \dfrac {6}{10} +\dfrac {8}{10}i \\\\ \mathbf{f(-i)} &=& \mathbf{0.6+0.8i} \\ \hline \end{array}\)

 

laugh

27 янв. 2020 г.
 #1
avatar+26398 
+2

Suppose we have a square
with vertices at \((0),~ (-6+13i),~ (-19+7i) ,~~\text{and}~ (-13-6i)\).
Suppose that we want to multiply these points
by a single complex number a+bi to get a square
with vertices \((0),~ (8+2i),~ (6+10i),~ ~\text{and}~ (-2+8i)\).
What is (a,b)?

 

I assume:

 

We have a black square with vertices: \(\mathbf{z =|z|e^{i\varphi}}\)

We have a blue square with vertices: \(\mathbf{w =|w|e^{i\omega}}\)

We have a single complex number: \(\mathbf{x=a+bi}\)

 

Formula: \(\mathbf{w = x\cdot z \qquad \text{with}\qquad x = \dfrac{|w|}{|z|}e^{i(\omega-\varphi)} }\)

 

\(\text{For example we set $z=(-6+13i) \quad \text{and} \quad w=(8+2i)$ }\)

\(\begin{array}{|rcll|} \hline |z| &=& \sqrt{ \left(-6\right)^2+13^2 } \\ &=& \sqrt{36+169} \\ &=& \sqrt{205} \\ \mathbf{|z|} &=& \mathbf{14.3178210633}\\\\ |w| &=& \sqrt{8^2+2^2} \\ &=& \sqrt{68} \\ \mathbf{|w|} &=& \mathbf{8.2462112512}\\\\ \dfrac{|w|}{|z|}&=& \dfrac{8.2462112512}{14.3178210633} \\\\ \mathbf{\dfrac{|w|}{|z|}}&=& \mathbf{0.5759403763} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \omega-\varphi &=& \arctan\left(\dfrac{2}{8}\right) -\arctan\left(\dfrac{13}{-6}\right) \\ &=& 14.03624346791^\circ - (180^\circ-65.2248594312^\circ) \\ &=& 14.03624346791^\circ - 114.775140569^\circ \\ \mathbf{\omega-\varphi} &=& \mathbf{-100.738897101^\circ} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{\dfrac{|w|}{|z|}*e^{i(\omega-\varphi)}} \\\\ x &=& 0.5759403763*e^{i(-100.738897101^\circ)} \\\\ x &=& 0.5759403763* \Big( \cos(-100.738897101^\circ)+i*\sin(-100.738897101^\circ) \Big) \\ x &=& 0.5759403763*(-0.1863336512-0.9824865243i) \\ x &=&-0.1073170732-0.5658536585i \\\\ \mathbf{a} &=& \mathbf{-0.1073170732} \\ \mathbf{b} &=& \mathbf{-0.5658536585} \\ \hline \end{array}\)


\((a,~b) = (-0.1073170732,~-0.5658536585)\)

 

laugh

25 янв. 2020 г.
 #3
avatar+26398 
+3

The rectangle ABCD has vertices at A = (1, 2, 3), B = (3, 6, −2), and C = (0, 2, −6).

Determine the coordinates of vertex D.


\(\begin{array}{|rcll|} \hline \mathbf{\vec{B}-\vec{A}} &=& \mathbf{\vec{C}-\vec{D}} \\\\ \left( \begin{array}{r} 3 \\ 6 \\ -2 \end{array}\right) - \left( \begin{array}{r} 1 \\ 2 \\ 3 \end{array}\right) &=& \left( \begin{array}{r} 0 \\ 2 \\ -6 \end{array}\right) - \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) \\\\ \left( \begin{array}{r} 3-1 \\ 6-2 \\ -2-3 \end{array}\right) &=& \left( \begin{array}{r} 0 \\ 2 \\ -6 \end{array}\right) - \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) \\\\ \left( \begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right) &=& \left( \begin{array}{r} 0 \\ 2 \\ -6 \end{array}\right) - \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) \\\\ \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) &=& \left( \begin{array}{r} 0 \\ 2 \\ -6 \end{array}\right) - \left( \begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right) \\\\ \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) &=& \left( \begin{array}{r} 0-2 \\ 2-4 \\ -6-(-5) \end{array}\right) \\\\ \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) &=& \left( \begin{array}{r} 0-2 \\ 2-4 \\ -6+5 \end{array}\right) \\\\ \left( \begin{array}{r} x_D \\ y_D \\ z_D \end{array}\right) &=& \left( \begin{array}{r} -2 \\ -2 \\ -1 \end{array}\right) \\ \hline \end{array}\)

 

\(\mathbf{\vec{D} =} \left( \begin{array}{r} \mathbf{-2} \\ \mathbf{-2} \\ \mathbf{-1} \end{array}\right)\)

 

laugh

23 янв. 2020 г.