heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2

Let \(a_0=6\) and \(a_n = \dfrac{a_{n - 1}}{1 + a_{n - 1}}\) for all \(n \ge 1\).
Find \(a_{100}\)

 

\(\begin{array}{|rcll|} \hline a_n &=& \dfrac{a_{n - 1}}{1 + a_{n - 1}} \\\\ \dfrac{1}{a_n} &=& \dfrac{1 + a_{n - 1}} {a_{n - 1}} \\\\ \dfrac{1}{a_n} &=& \dfrac{1} {a_{n - 1}} +\dfrac{a_{n - 1}} {a_{n - 1}} \\\\ \mathbf{\dfrac{1}{a_n}} &=& \mathbf{\dfrac{1} {a_{n - 1}} + 1} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{\dfrac{1}{a_n}} = \mathbf{\dfrac{1} {a_{n - 1}} + 1} \\ \hline n=1: & \dfrac{1}{a_1} &=& \dfrac{1} {a_{1 - 1}} + 1 \\\\ & \mathbf{\dfrac{1}{a_1}} &=& \mathbf{ \dfrac{1} {a_{0}} + 1} \\ \hline n=2: & \dfrac{1}{a_2} &=& \dfrac{1} {a_{2-1}} + 1 \\\\ & \dfrac{1}{a_2} &=& \dfrac{1} {a_{1}} + 1 \\\\ & \dfrac{1}{a_2} &=& \dfrac{1} {a_{0}} + 1 + 1 \\\\ & \mathbf{\dfrac{1}{a_2}} &=& \mathbf{\dfrac{1} {a_{0}} + 2} \\ \hline n=3: & \dfrac{1}{a_3} &=& \dfrac{1} {a_{3-1}} + 1 \\\\ & \dfrac{1}{a_3} &=& \dfrac{1} {a_{2}} + 1 \\\\ & \dfrac{1}{a_3} &=& \dfrac{1} {a_{0}} + 2 + 1 \\\\ & \mathbf{\dfrac{1}{a_3}} &=& \mathbf{\dfrac{1} {a_{0}} + 3} \\ \hline \ldots \\ \hline & \mathbf{\dfrac{1}{a_n}} &=& \mathbf{\dfrac{1} {a_{0}} + n} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{1}{a_n}} &=& \mathbf{\dfrac{1} {a_{0}} + n} \quad | \quad a_0 = 6 \\\\ \dfrac{1}{a_n} &=& \dfrac{1} {6} + n \quad | \quad n = 100 \\\\ \dfrac{1}{a_{100}} &=& \dfrac{1} {6} + 100 \\\\ \dfrac{1}{a_{100}} &=& \dfrac{1} {6} + \dfrac{600}{6} \\\\ \dfrac{1}{a_{100}} &=& \dfrac{1+600} {6} \\\\ \dfrac{1}{a_{100}} &=& \dfrac{601} {6} \\\\ \mathbf{ a_{100} } &=& \mathbf{\dfrac{6}{601} } \\ \hline \end{array}\)

 

laugh

17 мар. 2020 г.
 #1
avatar+26398 
+2

(a)
\(n\in \mathbb{N}: \qquad \sum \limits_{k=1}^{n} (k^3-1) = \left(\dfrac{n(n+1)}{2}\right)^2-n\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{n=1}: & \sum \limits_{k=1}^{1} (k^3-1) &=& \left(\dfrac{1(1+1)}{2}\right)^2-1 \\\\ & 1^3-1 &=& \left(\dfrac{1*2}{2}\right)^2-1 \\\\ & 1 -1 &=& \left(1\right)^2-1 \\\\ & 1 -1 &=& 1-1 \ \checkmark \\ \hline \end{array}\)

 

\(\small{ \begin{array}{|rcll|} \hline \mathbf{n+1}: & \sum \limits_{k=1}^{n+1} (k^3-1) &=& \left(\dfrac{(n+1)\Big((n+1)+1\Big)}{2}\right)^2-(n+1) \\\\ & \sum \limits_{k=1}^{n+1} (k^3-1) &=& \left(\dfrac{(n+1)(n+2)}{2}\right)^2-(n+1) \\\\ & \sum \limits_{k=1}^{n+1} (k^3-1) &=& \dfrac{(n+1)^2(n+2)^2}{2^2} -(n+1) \\\\ & \sum \limits_{k=1}^{n+1} (k^3-1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & && \boxed{\sum \limits_{k=1}^{n+1} (k^3-1)=\sum \limits_{k=1}^{n} (k^3-1) +(n+1)^3-1 } \\ & \sum \limits_{k=1}^{n} (k^3-1) +(n+1)^3-1 &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & && \boxed{\text{Induktionsannahme:}\\ \sum \limits_{k=1}^{n} (k^3-1) = \left(\dfrac{n(n+1)}{2}\right)^2-n} \\ & \left(\dfrac{n(n+1)}{2}\right)^2-n +(n+1)^3-1 &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & \left(\dfrac{n(n+1)}{2}\right)^2 +(n+1)^3-n-1 &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & \left(\dfrac{n(n+1)}{2}\right)^2 +(n+1)^3-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & \dfrac{n^2(n+1)^2}{2^2} +(n+1)^3-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & \dfrac{n^2(n+1)^2}{4} +(n+1)^2(n+1)-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & (n+1)^2\left( \dfrac{n^2}{4}+(n+1)\right)-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & (n+1)^2\left( \dfrac{n^2+4(n+1)}{4}\right)-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & (n+1)^2\left( \dfrac{n^2+4n+4}{4}\right)-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1) \\ & && \boxed{n^2+4n+4 = (n+2)^2 } \\ \\ & \dfrac{(n+1)^2(n+2)^2}{4}-(n+1) &=& \dfrac{(n+1)^2(n+2)^2}{4} -(n+1)\ \checkmark \\ \hline \end{array} }\)

 

laugh

16 мар. 2020 г.
 #3
avatar+26398 
+3

Please help!

 

a)

Find expressions for p,q,r and s in terms of a,b,c and d

\(\begin{array}{|rcll|} \hline p &=& \dfrac{a+b}{2} + \left(\dfrac{b-a}{2}\right)_\perp \\ 2p &=& (a+b) + (b-a)_\perp \qquad \text{rotate clockwise $\times (-i)$ }\\ 2p &=& (a+b) + (b-a)\times (-i) \\ \mathbf{2p} &=& \mathbf{(a+b) + (a-b)i}\\ \text{similarly} \quad \\ \mathbf{2q} &=& \mathbf{(b+c) + (b-c)i}\\ \mathbf{2r} &=& \mathbf{(c+d) + (c-d)i}\\ \mathbf{2s} &=& \mathbf{(d+a) + (d-a)i}\\ \hline \end{array} \)

 

b)
Prove that the line segment between p and r
is perpendicular  to the line segment between q and s

\(\begin{array}{|rcll|} \hline 2rp &=& 2(r-p) \\ &=& 2r-2p \\ &=& (c+d)+(c-d)i-(a+b)-(a-b)i \\ &=& (c+d)-(a+b)+(c-d)i-(a-b)i \qquad (1) \\\\ 2sq &=& 2(s-q) \\ &=& 2s-2q \\ &=& (d+a)+(d-a)i-(b+c)-(b-c)i \\ &=& (d+a)-(b+c)+(d-a)i-(b-c)i \qquad (2) \\\\ \hline \mathbf{2rp_\perp} &=& \mathbf{2sq\ ?} \\ 2rp &=& (c+d)-(a+b)+(c-d)i-(a-b)i \qquad \text{rotate counter clockwise $\times i$ } \\ 2rp_\perp &=& \Big((c+d)-(a+b)+(c-d)i-(a-b)i\Big) \times i \\ 2rp_\perp &=& (c+d)i-(a+b)i+(c-d)i^2-(a-b)i^2\qquad i^2=-1 \\ 2rp_\perp &=& (c+d)i-(a+b)i-(c-d)+(a-b) \\ 2rp_\perp &=& (d+a)-(b+c)+(d-a)i-(b-c)i \\ 2rp_\perp &=& 2sq \checkmark \\ \hline \end{array} \)

 

Prove that the line segment between p and r
equal in length to the line segment between q and s

\(\small{ \begin{array}{|rcll|} \hline && \Big[(c+d)-(a+b)\Big]^2 +\Big[(c-d)-(a-b)\Big]^2 \\ &=&\Big[(d+a)-(b+c)\Big]^2 +\Big[(d-a)-(b-c)\Big]^2 \\\\ && (c+d)^2+(a+b)^2-2(c+d)(a+b) \\ && +(c-d)^2-(a-b)^2-2(c-d)(a-b) \\ &=& (d+a)^2+(b+c)^2-2(d+a)(b+c) \\ && +(d-a)^2+(b-c)^2-2(d-a)(b-c) \\\\ &&c^2+d^2+2cd+a^2+b^2+2ab \\ && -2ac-2bc-2da-2bd \\ && +c^2+d^2-2cd+a^2+b^2 \\ && -2ab-2ac+2bc+2da-2db \\ &=& d^2+a^2+2da+b^2+c^2+2bc \\ && -2db-2dc-2ab-2ac \\ && +d^2+a^2-2da + b^2+c^2-2bc \\ && -2db+2dc+2ab-2ac \\\\ &&c^2+d^2+a^2+b^2-2ac-2db \\ && +c^2+d^2+a^2+b^2-2ac-2db \\ &=& d^2+a^2+b^2+c^2 -2db-2ac \\ && +d^2+a^2+ b^2+c^2-2db-2ac \\\\ && 2c^2+2d^2+2a^2+2b^2-4ac-4db \\ &=& 2c^2+2d^2+2a^2+2b^2-4ac-4db\ \checkmark \\ \hline \end{array} }\)

 

laugh

15 мар. 2020 г.