heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #6
avatar+26398 
+1

Compute the sum:
\((a +(2n+1)d)^2- (a + (2n)d)^2 +(a + (2n-1)d)^2 - (a+(2n-2)d)^2 + \cdots + (a+d)^2 - a^2\).

 

\(\small{ \begin{array}{|rcll|} \hline && \mathbf{\Big(a +(2n+1)d\Big)^2- \Big(a + (2n)d\Big)^2 +\Big(a + (2n-1)d\Big)^2 - \Big(a+(2n-2)d\Big)^2 + \cdots + (a+d)^2 - a^2} \\\\ &=& \Big(a +(2n+1)d\Big)^2 +\Big(a + (2n-1)d\Big)^2+\Big(a + (2n-3)d\Big)^2 + \cdots + \Big(a+(2n-(2n-1))d\Big)^2 \\ && -\Big(a + (2n-0)d\Big)^2- \Big(a+(2n-2)d\Big)^2- \Big(a+(2n-4)d\Big)^2 - \cdots -\Big(a+(2n-(2n))d\Big)^2 \\\\ &=& \mathbf{\sum \limits_{k=1}^{n+1}\Big(~ a+(2k-1)d~\Big)^2 -\sum \limits_{k=1}^{n+1}\Big(~ a+2(k-1)d~\Big)^2} \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\sum \limits_{k=1}^{n+1}\Big(~ a+(2k-1)d~\Big)^2 -\sum \limits_{k=1}^{n+1}\Big(~ a+2(k-1)d~\Big)^2} \\\\ &=& \sum \limits_{k=1}^{n+1}\Big(~ a+(2k-1)d~\Big)^2 - \Big(~a+2(k-1)d~\Big)^2 \\\\ &=& \sum \limits_{k=1}^{n+1} a^2+2ad(2k-1)+d^2(2k-1)^2-\Big(~ a^2+4ad(k-1)+4d^2(k-1)^2 ~\Big) \\\\ &=& \sum \limits_{k=1}^{n+1} {\color{red}{a^2}}+2ad(2k-1)+d^2(2k-1)^2 {\color{red}{-a^2}}-4ad(k-1)-4d^2(k-1)^2 \\\\ &=& \sum \limits_{k=1}^{n+1} 2ad(2k-1)+d^2(2k-1)^2 -4ad(k-1)-4d^2(k-1)^2 \\\\ &=& \sum \limits_{k=1}^{n+1} {\color{red}{4adk}}-2ad+d^2(2k-1)^2 {\color{red}{-4adk}}+4ad-4d^2(k-1)^2 \\\\ &=& \sum \limits_{k=1}^{n+1} -2ad+d^2(2k-1)^2 +4ad-4d^2(k-1)^2 \\\\ &=& \sum \limits_{k=1}^{n+1} 2ad+d^2(2k-1)^2 -4d^2(k-1)^2 \\\\ &=& \sum \limits_{k=1}^{n+1}2ad +d^2~\sum \limits_{k=1}^{n+1} (2k-1)^2 -4(k-1)^2 \quad | \quad \sum \limits_{k=1}^{n+1}2ad = 2ad(n+1) \\\\ &=& 2ad(n+1) +d^2\sum \limits_{k=1}^{n+1} (2k-1)^2 -4(k-1)^2 \\\\ &=& 2ad(n+1) +d^2\sum \limits_{k=1}^{n+1} 4k^2-4k+1-4(k^2-2k+1) \\\\ &=& 2ad(n+1) +d^2\sum \limits_{k=1}^{n+1} {\color{red}{4k^2}}-4k+1{\color{red}{-4k^2}}+8k-4 \\\\ &=& 2ad(n+1) +d^2\sum \limits_{k=1}^{n+1} 4k-3 \\\\ &=& 2ad(n+1) +d^2\Big(~4\sum \limits_{k=1}^{n+1}k-\sum \limits_{k=1}^{n+1}3~\Big)\quad | \quad \sum \limits_{k=1}^{n+1}3 = 3(n+1) \\\\ &=& 2ad(n+1) +d^2\Big(~4\sum \limits_{k=1}^{n+1}k-3(n+1)~\Big) \\\\ &=& 2ad(n+1) +d^2\Big(~4\sum \limits_{k=1}^{n+1}k-3(n+1)~\Big) \quad | \quad \sum \limits_{k=1}^{n+1}k = \dfrac{1+(n+1)}{2}(n+1) \\\\ &=& 2ad(n+1) +d^2\Big(~4\dfrac{(n+2))}{2}(n+1)-3(n+1)~\Big) \\\\ &=& 2ad(n+1) +d^2\Big(~2(n+2)(n+1)-3(n+1)~\Big) \\\\ &=& 2ad(n+1) +d^2(n+1)\Big(~2(n+2)-3~\Big) \\\\ &=& 2ad(n+1) +d^2(n+1)(2n+4-3) \\\\ &=& \mathbf{2ad(n+1) +d^2(n+1)(2n+1)} \\ \hline \end{array}\)

 

\(\mathbf{\Big(a +(2n+1)d\Big)^2- \Big(a + (2n)d\Big)^2 +\Big(a + (2n-1)d\Big)^2 - \Big(a+(2n-2)d\Big)^2 + \cdots + (a+d)^2 - a^2} \\= \mathbf{2ad(n+1) +d^2(n+1)(2n+1)}\)

 

laugh

4 мая 2020 г.
 #3
avatar+26398 
+2

Compute
\(\dfrac{1^2}{2^1} + \dfrac{2^2}{2^2} + \dfrac{3^2}{2^3} +~ \ldots~ + \dfrac{n^2}{2^n} +~ \ldots\)

 

\(\small{ \begin{array}{|rcllll|} \hline \text{Sum}&=& \mathbf{\dfrac{1^2}{2^1}} &\mathbf{+\dfrac{2^2}{2^2}} &\mathbf{+ \dfrac{3^2}{2^3}} &\mathbf{+ \dfrac{4^2}{2^4}} &\mathbf{+~ \ldots~ + \dfrac{n^2}{2^n} +~ \ldots } \\\\ &=& 1^2\left(\dfrac{1}{2}\right) &+2^2\left(\dfrac{1}{2}\right)^2 &+3^2\left(\dfrac{1}{2}\right)^3 &+4^2\left(\dfrac{1}{2}\right)^4 &+~ \ldots~ + n^2\left(\dfrac{1}{2}\right)^n \quad | \quad r = \dfrac{1}{2} \\\\ &=& 1^2r&+2^2r^2&+3^2r^3&+4^2r^4 &+~ \ldots~ + n^2r^n +~ \ldots~ \\\\ &=& 1r &+4r^2 &+9r^3 &+16r^4 &+~ \ldots~ \\\\ &=& 1r &+1r^2 &+1r^3 &+1r^4 &+~ \ldots~ \quad | \quad s_1=r(1+r+r^2+r^3+~ \ldots~ ) \\ & & &+3r^2 &+3r^3 &+3r^4 &+~ \ldots~ \quad | \quad s_2=3r^2(1+r+r^2+r^3+~ \ldots~ ) \\ & & & &+5r^3 &+5r^4 &+~ \ldots~ \quad | \quad s_3=5r^3(1+r+r^2+r^3+~ \ldots~ ) \\ & & & & &+7r^4 &+~ \ldots~ \quad | \quad s_4=7r^4(1+r+r^2+r^3+~ \ldots~ ) \\ & & & & &\ldots & +~ \ldots~ \quad | \quad \ldots \\ \hline \end{array} \\ \begin{array}{|rcllll|} \hline &=& \left(s_1+s_2+s_3+s_4+~ \ldots~\right) \\ &=& \left(r+3r^2+5r^3+7r^4+~ \ldots~\right) \left(1+r+r^2+r^3+~ \ldots~ \right) \quad | \quad 1+r+r^2+r^3+~ \ldots = \dfrac{1}{1-r} \\ &=& \dfrac{1}{1-r}\left(r+3r^2+5r^3+7r^4+~ \ldots~\right) \\ \mathbf{\text{Sum}} &=& \mathbf{\dfrac{1}{1-r}S } \quad | \quad S= r+3r^2+5r^3+7r^4+~ \ldots \\ \hline \end{array} }\)

 

\(\small{ \begin{array}{|rcllll|} \hline \mathbf{S}&=& \mathbf{r} &\mathbf{+3r^2} &\mathbf{+5r^3} &\mathbf{+7r^4} &+~ \ldots \\ &=& r &+r^2 &+r^3 &+r^4 &+~ \ldots \quad | \quad S_1=r(1+r+r^2+r^3+~ \ldots~ ) \\ & & &+2r^2 &+2r^3 &+2r^4 &+~ \ldots \quad | \quad S_2=2r^2(1+r+r^2+r^3+~ \ldots~ ) \\ & & & &+2r^3 &+2r^4 &+~ \ldots \quad | \quad S_3=2r^3(1+r+r^2+r^3+~ \ldots~ ) \\ & & & & &+2r^4 &+~ \ldots \quad | \quad S_4=2r^4(1+r+r^2+r^3+~ \ldots~ ) \\ & & & & &\ldots& +~ \ldots~ \quad | \quad \ldots \\ \hline \end{array} \\ \begin{array}{|rcllll|} \hline &=& \left(S_1+S_2+S_3+S_4+~ \ldots~\right) \\ &=& \left(r+2r^2+2r^3+2r^4+~ \ldots~\right) \left(1+r+r^2+r^3+~ \ldots~ \right) \quad | \quad 1+r+r^2+r^3+~ \ldots = \dfrac{1}{1-r} \\ &=& \dfrac{1}{1-r}\left(r+2r^2+2r^3+2r^4+~ \ldots~\right) \\ &=& \dfrac{r}{1-r}\left(1+2r+2r^2+2r^3+~ \ldots~\right) \\ &=& \dfrac{r}{1-r}\left(1+2r(1+r+r^2+r^3~ \ldots~)\right) \quad | \quad 1+r+r^2+r^3+~ \ldots = \dfrac{1}{1-r} \\ &=& \dfrac{r}{1-r}\left(1+2r\left(\dfrac{1}{1-r}\right)\right) \\ &=& \dfrac{r}{1-r}\left(1+\dfrac{2r}{1-r}\right) \\ \mathbf{S}&=& \mathbf{\dfrac{r}{1-r}\left(\dfrac{1+r}{1-r}\right)} \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{Sum}} &=& \mathbf{\left(\dfrac{1}{1-r}\right)S } \quad | \quad \mathbf{S=\dfrac{r}{1-r}\left(\dfrac{1+r}{1-r}\right)} \\\\ \text{Sum}&=&\left(\dfrac{1}{1-r}\right)\left(\dfrac{r}{1-r}\right)\left(\dfrac{1+r}{1-r}\right) \\\\ \text{Sum}&=&\dfrac{r(1+r)}{(1-r)^3} \quad | \quad r=\dfrac{1}{2} \\\\ \text{Sum}&=&\dfrac{\dfrac{1}{2}\left(1+\dfrac{1}{2}\right)}{\left(1-\dfrac{1}{2}\right)^3} \\\\ \text{Sum}&=&\dfrac{\dfrac{1}{2}\left(\dfrac{3}{2}\right)}{\left(\dfrac{1}{2}\right)^3} \\\\ \text{Sum}&=&\dfrac{\left(\dfrac{3}{2}\right)}{\left(\dfrac{1}{2}\right)^2} \\\\ \text{Sum}&=&\dfrac{\left(\dfrac{3}{2}\right)}{\left(\dfrac{1}{4}\right)} \\\\ \text{Sum}&=&\dfrac{12}{2} \\\\ \mathbf{\text{Sum}}&=& \mathbf{6} \\ \hline \end{array}\)

 

laugh

2 мая 2020 г.
 #1
avatar+26398 
+3

Consider the vectors \(\mathbf{v} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}\), \(\mathbf{w} = \begin{pmatrix} 1\\4 \\5 \end{pmatrix}\), and  \(\mathbf{x} = \begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix}\).
If the vectors \(\mathbf{v}\), \(\mathbf{w}\) and \(\mathbf{x}\) are linearly independent, answer with ? (a question mark.)
If they aren't, find coefficients a,b and c, not all 0, such that \(a\begin{pmatrix} 1\\2\\1 \end{pmatrix}+b \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + c\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\)

and answer with \(\dfrac{a-b}{c}\).

 

 

\(\begin{array}{|rcll|} \hline \begin{array}{|rcll|} \hline a\begin{pmatrix} 1\\2\\1 \end{pmatrix}+b \begin{pmatrix} 1\\4 \\5 \end{pmatrix} + c\begin{pmatrix}-1 \\ 6 \\ 15\end{pmatrix} &=& \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \hline \end{array}\\\\ \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 2 & 4 & 6 & 0\\ 1 & 5 & 15 & 0 \end{array}\right)_{\frac{R_2}{2}\rightarrow R_2} \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 1 & 2 & 3 & 0\\ 1 & 5 & 15 & 0 \end{array}\right)_{R_3-R_1 \rightarrow R_3} \Rightarrow \\ \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 1 & 2 & 3 & 0\\ 0 & 4 & 16 & 0 \end{array}\right)_{\frac{R_3}{4}\rightarrow R_3} \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 1 & 2 & 3 & 0\\ 0 & 1 & 4 & 0 \end{array}\right)_{R_2-R_1 \rightarrow R_2} \Rightarrow \\ \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 0 & 1 & 4 & 0\\ 0 & 1 & 4 & 0 \end{array}\right)_{R_3-R_2\rightarrow R_3} \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 1 & -1& 0 \\ 0 & 1 & 4 & 0\\ 0 & 0 & 0 & 0 \end{array}\right)_{R_1-R_2 \rightarrow R_1} \Rightarrow \\ \Rightarrow \left(\begin{array}{@{}ccc|c@{}} 1 & 0 & -5& 0 \\ 0 & 1 & 4 & 0\\ 0 & 0 & 0 & 0 \end{array}\right) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(\begin{array}{@{}ccc|c@{}} 1 & 0 & -5& 0 \\ 0 & 1 & 4 & 0\\ 0 & 0 & 0 & 0 \end{array}\right) \\ & \begin{array}{rcll} a -5c &=& 0 \\ b+4c &=& 0 \\ c &=& k \\ \end{array}\quad \Rightarrow \quad \begin{array}{rcll} a -5k &=& 0 \\ b+4k &=& 0 \\ c &=& k \\ \end{array}\quad \Rightarrow \quad \begin{array}{rcll} \mathbf{a} &=& \mathbf{5k} \\ \mathbf{b} &=& \mathbf{-4k} \\ \mathbf{c} &=& \mathbf{k} \\ \end{array} \\ \hline \end{array} \)

 

\((a,\ b,\ c) = (5k,\ -4k,\ k) \Rightarrow \text{Nontrivial}\Rightarrow \mathbf{\text{Linearly dependent}}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{a-b}{c}} &=& \dfrac{5k-(-4k)}{k} \\\\ \dfrac{a-b}{c} &=& \dfrac{9k}{k} \\\\ \mathbf{\dfrac{a-b}{c}} &=& \mathbf{9} \\ \hline \end{array}\)

 

laugh

30 апр. 2020 г.