A regular dodecahedron \(P_1 P_2 P_3 \dotsb P_{12}\) is inscribed in a circle with radius 1.
Compute \((P_1 P_2)^2 + (P_1 P_3)^2 + \dots + (P_{11} P_{12})^2\).
(The sum includes all terms of the form \((P_i P_j)^2\), where \(1 \le i < j \le 12\).)
My answer see here: https://web2.0calc.com/questions/plshelp#r7
Let n and k be positive integers such that n<10^6 and
\(\dbinom{13}{13} + \dbinom{14}{13} + \dbinom{15}{13} + \dots + \dbinom{52}{13} + \dbinom{53}{13} + \dbinom{54}{13} = \dbinom{n}{k}\).
Find the value of n and k.
see Hockey-stick identity: https://en.wikipedia.org/wiki/Hockey-stick_identity
\(\dbinom{13}{13} + \dbinom{14}{13} + \dbinom{15}{13} + \dots + \dbinom{52}{13} + \dbinom{53}{13} + \dbinom{54}{13} = \dbinom{55}{14}\)