heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
0

The system of equations

\(\dfrac{xy}{x+y}=1,\ \dfrac{xz}{x+z}=2,\ \dfrac{yz}{y+z}=3 \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{xy}{x+y}} &=& \mathbf{1} \\\\ \dfrac{x+y}{xy} &=& 1 \\\\ \dfrac{x}{xy}+\dfrac{y}{xy} &=& 1 \\\\ \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} &=& \mathbf{1} \qquad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\dfrac{xz}{x+z}} &=& \mathbf{2} \\\\ \dfrac{x+z} {xz}&=& \dfrac{1}{2} \\\\ \dfrac{x} {xz}+\dfrac{z} {xz}&=& \dfrac{1}{2} \\\\ \mathbf{\dfrac{1} {z}+\dfrac{1}{x}} &=& \mathbf{\dfrac{1}{2}} \qquad (2) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\dfrac{yz}{y+z}} &=& \mathbf{3} \\\\ \dfrac{y+z}{yz} &=& \dfrac{1}{3} \\\\ \dfrac{y}{yz}+\dfrac{z}{yz} &=& \dfrac{1}{3} \\\\ \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} &=& \mathbf{\dfrac{1}{3}} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{x=\ ?} \\ \hline (1)+(2)-(3): & \dfrac{1}{y}+\dfrac{1}{x} + \dfrac{1} {z}+\dfrac{1}{x}- \left( \dfrac{1}{z}+\dfrac{1}{y} \right) &=& 1 +\dfrac{1}{2}- \dfrac{1}{3} \\\\ & \dfrac{2}{x} &=& 1 +\dfrac{1}{2}- \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{x} &=& 6 + 3- 2 \\\\ & \dfrac{12}{x} &=& 7 \\\\ & \mathbf{x} &=& \mathbf{\dfrac{12}{7}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{y=\ ?} \\ \hline (1)-(2)+(3): & \dfrac{1}{y}+\dfrac{1}{x} - \left(\dfrac{1} {z}+\dfrac{1}{x}\right)+ \dfrac{1}{z}+\dfrac{1}{y} &=& 1 -\dfrac{1}{2}+ \dfrac{1}{3} \\\\ & \dfrac{2}{y} &=& 1 -\dfrac{1}{2}+ \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{y} &=& 6 - 3+ 2 \\\\ & \dfrac{12}{y} &=& 5 \\\\ & \mathbf{y} &=& \mathbf{\dfrac{12}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{z=\ ?} \\ \hline -(1)+(2)+(3): & - \left( \dfrac{1}{y}+\dfrac{1}{x} \right) + \dfrac{1} {z}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y} &=& -1 +\dfrac{1}{2}+ \dfrac{1}{3} \\\\ & \dfrac{2}{z} &=& -1 +\dfrac{1}{2}+ \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{z} &=& -6 + 3+ 2 \\\\ & \dfrac{12}{z} &=& -1 \\\\ & \mathbf{z} &=& \mathbf{-12} \\ \hline \end{array}\)

 

laugh

9 июн. 2020 г.
 #1
avatar+26398 
+1

Find the coefficient of \(x^3*y*z^2\) in the expandsion of \((3x - 5y + z)^6\).

 

Multinomial theorem:

For any positive integer m and any nonnegative integer n, the multinomial formula tells us how a sum with m terms expands when raised to an arbitrary power n:
\(\left( x_1+x_2+\cdots +x_m \right)^n = \sum \limits_{k_1+k_2+\dots+k_m=n} \dbinom{n}{k_1,k_2,\dots,k_m}\cdot x_1^{k_1}\cdot x_2^{k_2}\dots x_m^{k_m}\)
where  
\(\dbinom{n}{k_1,k_2,\dots,k_m} = \dfrac{n!}{k_1!k_2!\dots k_m!}\)

 

Source: https://en.wikipedia.org/wiki/Multinomial_theorem

 

\(\begin{array}{|lcll|} \hline x^3*y*z^2 \\ n=6,\ m=3 \\ \hline k_1 = 3,\ k_2 = 1,\ k_3 = 2 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (3x - 5y + z)^6&=& \dots + \dfrac{6!}{3!1!2!} (3x)^3(-5y)^1z^2 + \dots \\ \hline && \dfrac{6!}{3!1!2!} (3x)^3(-5y)^1z^2 \\\\ &=&\dfrac{6!}{3!1!2!}* 27x^3(-5y)z^2 \\\\ &=& \dfrac{4*5*6}{2}*27*(-5)x^3yz^2 \\\\ &=& -60*135 *x^3yz^2 \\\\ &=& \mathbf{-8100}x^3yz^2 \\ \hline \end{array}\)

 

laugh

9 июн. 2020 г.
 #2
avatar+26398 
+1

The following grid shows a magic square.  
What is the sum of the three numbers in any row?
\(\begin{array}{c|c|c} 2x & 3 & 2 \\ \hline & & -3 \\ \hline 0 & x & \end{array}\)


Find x:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} 2x & 3 & 2 \\ \hline & & -3 \\ \hline 0 & x & \color{red}y \end{array} \\ 0+x+y &=& 2-3+y \\ x &=& 2-3 \\ \mathbf{x}&=& \mathbf{-1} \\ \hline \end{array}\)

 

The sum of the three numbers in any row:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} \color{red}-2 & \color{red}3 & \color{red}2 \\ \hline & & -3 \\ \hline 0 & -1 & \end{array} \\ -2+3+2 &=& \mathbf{3} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline & \color{red}y& -3 \\ \hline 0 & -1 & \end{array} \\ 0+y+2 &=& 3 \\ y &=& 3-2 \\ \mathbf{y}&=& \mathbf{1} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline & 1& -3 \\ \hline 0 & -1 & \color{red}y \end{array} \\ -2+1+y &=& 3 \\ -1+y &=& 3\\ y &=& 3+1\\ \mathbf{y}&=& \mathbf{4} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline\color{red}y & 1& -3 \\ \hline 0 & -1 & 4 \end{array} \\ -2+y+0 &=& 3 \\ y &=& 3+2 \\ \mathbf{y}&=& \mathbf{5} \\ \hline \end{array}\)

 

The magic square:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline 5 & 1& -3 \\ \hline 0 & -1 & 4 \end{array} \\ \hline \end{array} \begin{array}{rcll} 0+1+2 &=& 3 \\ -2+3+2 &=& 3 \\ 5+1-3 &=& 3 \\ 0-1+4 &=& 3 \\ -2+1+4 &=& 3 \\ -2+5+0 &=& 3 \\ 3+1-1 &=& 3 \\ 2-3+4 &=& 3 \\ \end{array}\)

 

laugh

8 июн. 2020 г.
 #1
avatar+26398 
+1

In a University out of 120 students, 15 opted mathematics only, 16 opted statistics only, 9 opted physics only and
45 opted physics and mathematics, 30 opted physics and statistics, 8 opted mathematics and statistics, and
80 opted physics.
Find the sum of number of students who opted mathematics and those who didn't opted any of the subjects given.

 

My attempt:

\(\begin{array}{|rcll|} \hline x+y+t+9 &=& 80 \quad | \quad x+y = 45 \\ 45+t+9 &=& 80 \\ t+54 &=& 80 \\ t &=& 80-54 \\ \mathbf{ t } &=& \mathbf{26} \\ \hline \end{array} \begin{array}{|rcll|} \hline 30 &=& y+t \\ -~~8 &=& y+z \\ \hline 22 &=& y+t-(y+z) \\ 22 &=& y+t-y-z \\ 22 &=& t-z \\ z+22 &=& t \\ \mathbf{ z } &=& \mathbf{t-22} \quad | \quad \mathbf{ t =26} \\ z &=& 26-22 \\ \mathbf{ z } &=& \mathbf{4} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline z+y &=& 8 \\ y &=& 8-z \quad | \quad \mathbf{z=4} \\ y &=& 8-4\\ \mathbf{ y } &=& \mathbf{4} \\ \hline \end{array} \begin{array}{|rcll|} \hline x+y &=& 45 \\ x &=& 45-y \quad | \quad \mathbf{y=4} \\ x &=& 45-4\\ \mathbf{ x } &=& \mathbf{41} \\ \hline \end{array}\)

 

The sum of number of students who opted mathematics:

\(\begin{array}{|rcll|} \hline \text{Mathematics} &=& 15+x+y+z \\ \text{Mathematics} &=& 15+41+4+4 \\ \mathbf{\text{Mathematics}} &=& \mathbf{64} \\ \hline \end{array} \)

 

The sum of number of students who didn't opted any of the subjects given:

\(\begin{array}{|rcll|} \hline \text{didn't opted any} &=& 120-(9+15+16+x+y+z+t) \\ \text{didn't opted any} &=& 120-(40+41+4+4+26) \\ \text{didn't opted any} &=& 120-115 \\ \mathbf{\text{didn't opted any}} &=& \mathbf{5} \\ \hline \end{array}\)

 

laugh

8 июн. 2020 г.