heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+2

Compute 

\((1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \dotsm (1 + \tan 45^\circ)\)

 

Formula:

\(\begin{array}{|rcll|} \hline \tan(x-y) &=& \dfrac{\tan x-\tan y}{1+\tan x \tan y }\\\\ \tan(45^\circ) &=& 1 \\ \hline \end{array}\)

 

 

\(\small{ \begin{array}{|rcll|} \hline && \mathbf{(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \dotsm (1 + \tan 22^\circ)(1 + \tan 23^\circ) \dotsm (1 + \tan 43^\circ)(1 + \tan 44^\circ)(1 + \tan 45^\circ)} \\\\ &=& (1 + \tan 1^\circ)(1 + \tan 44^\circ) \times (1 + \tan 2^\circ)(1 + \tan 43^\circ) \times (1 + \tan 3^\circ)(1 + \tan 42^\circ) \\ && \vdots \\ && \times (1 + \tan 22^\circ)(1 + \tan 23^\circ) \times (1 + \tan 45^\circ) \\\\ &=& (1 + \tan 1^\circ)\Big(1 + \tan (45^\circ-1^\circ)\Big) \times (1 + \tan 2^\circ)\Big(1 + \tan (45^\circ-2^\circ)\Big) \times (1 + \tan 3^\circ)\Big(1 + \tan (45^\circ-3^\circ)\Big) \\ && \vdots \\ && \times (1 + \tan 22^\circ)\Big(1 + \tan (45^\circ-22^\circ)\Big) \times (1 + \tan 45^\circ) \\\\ &=& (1 + \tan 1^\circ)\Big(1 + \dfrac{\tan 45^\circ-\tan 1^\circ} {1+\tan 45^\circ\tan 1^\circ} \Big) \times (1 + \tan 2^\circ)\Big(1 + \dfrac{\tan 45^\circ-\tan 2^\circ} {1+\tan 45^\circ\tan 2^\circ} \Big) \times (1 + \tan 3^\circ)\Big(1 + \dfrac{\tan 45^\circ-\tan 3^\circ} {1+\tan 45^\circ\tan 3^\circ} \Big) \\ && \vdots \\ && \times (1 + \tan 22^\circ)\Big(1 + \dfrac{\tan 45^\circ-\tan 22^\circ} {1+\tan 45^\circ\tan 22^\circ}\Big) \times (1 + \tan 45^\circ) \quad | \quad \mathbf{\tan 45^\circ = 1} \\\\ &=& (1 + \tan 1^\circ)\Big(1 + \dfrac{1-\tan 1^\circ} {1+\tan 1^\circ} \Big) \times (1 + \tan 2^\circ)\Big(1 + \dfrac{1-\tan 2^\circ} {1+\tan 2^\circ} \Big) \times (1 + \tan 3^\circ)\Big(1 + \dfrac{1-\tan 3^\circ} {1+\tan 3^\circ} \Big) \\ && \vdots \\ && \times (1 + \tan 22^\circ)\Big(1 + \dfrac{1-\tan 22^\circ} {1+\tan 22^\circ}\Big) \times (1 + 1) \\\\ &=& (1 + \tan 1^\circ)*\dfrac{(1+\tan 1^\circ+1-\tan 1^\circ)} {(1+\tan 1^\circ)} \times (1 + \tan 2^\circ)*\dfrac{(1+\tan 2^\circ+1-\tan 2^\circ)} {(1+\tan 2^\circ)} \times (1 + \tan 3^\circ)*\dfrac{(1+\tan 3^\circ+1-\tan 3^\circ)} {(1+\tan 3^\circ)} \\ && \vdots \\ && \times (1 + \tan 22^\circ)*\dfrac{(1+\tan 22^\circ+1-\tan 22^\circ)} {(1+\tan 22^\circ)} \times 2 \\\\ &=& 2\times 2\times 2 \\ && \vdots \\ && \times 2 \times 2 \\\\ &=& 2^{22}\times 2 \\\\ &=& 2^{23} \\\\ &=& \mathbf{8388608} \\ \hline \end{array} }\)

 

laugh

23 июл. 2020 г.
 #5
avatar+26398 
+2
20 июл. 2020 г.
 #3
avatar+26398 
+2

Simpify \(\dfrac{\sin 25^\circ \sin 35^\circ \sin 85^\circ}{\sin 75^\circ}\)

 

Formula:

\(\begin{array}{|rcll|} \hline \sin(x)\sin(y) &=& \dfrac{1}{2}\Big( \cos(x-y)-\cos(x+y) \Big) \\\\ \sin(x)\cos(y) &=& \dfrac{1}{2}\Big( \sin(x-y)+\sin(x+y) \Big) \\\\ \cos(60^\circ) &=& \dfrac12 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \dfrac{\sin(25^\circ) \sin(35^\circ) \sin(85^\circ)}{\sin(75^\circ)} } \\\\ && \qquad \boxed{ \sin(x)\sin(y) = \dfrac{1}{2}\Big( \cos(x-y)-\cos(x+y) \Big) \\ \sin(35^\circ)\sin(25^\circ) = \dfrac{1}{2}\Big( \cos(35^\circ-25^\circ)-\cos(35^\circ+25^\circ) \Big) \\ \sin(35^\circ)\sin(25^\circ) = \dfrac{1}{2}\Big( \cos(10^\circ)-\cos(60^\circ) \Big) \\ \sin(35^\circ)\sin(25^\circ) = \dfrac{1}{2}\Big( \cos(10^\circ)-\dfrac{1}{2} \Big) \\ \sin(35^\circ)\sin(25^\circ) = \dfrac{1}{2}\cos(10^\circ)-\dfrac{1}{4} } \\\\ &=& \dfrac{\Big(\dfrac{1}{2}\cos(10^\circ)-\dfrac{1}{4}\Big) \sin(85^\circ)}{\sin(75^\circ)} \\\\ &=& \dfrac{\dfrac{1}{2}*\cos(10^\circ)\sin(85^\circ)-\dfrac{1}{4}*\sin(85^\circ)}{\sin(75^\circ)} \\\\ && \qquad \boxed{ \sin(x)\cos(y) = \dfrac{1}{2}\Big( \sin(x-y)+\sin(x+y) \Big) \\ \sin(85^\circ)\cos(10^\circ) = \dfrac{1}{2}\Big( \sin(85^\circ-10^\circ)+\sin(85^\circ+10^\circ) \Big) \\ \sin(85^\circ)\cos(10^\circ) = \dfrac{1}{2}\Big( \sin(75^\circ)+\sin(95^\circ) \Big) \quad | \quad \sin(95^\circ)=\sin(180^\circ-95^\circ)=\sin(85^\circ) \\ \sin(85^\circ)\cos(10^\circ) = \dfrac{1}{2}\Big( \sin(75^\circ)+\sin(85^\circ) \Big) } \\\\ &=& \dfrac{\dfrac{1}{2}*\dfrac{1}{2}\Big( \sin(75^\circ)+\sin(85^\circ) \Big)-\dfrac{1}{4}*\sin(85^\circ)}{\sin(75^\circ)} \\\\ &=& \dfrac{\dfrac{1}{4}*\sin(75^\circ)+\dfrac{1}{4}*\sin(85^\circ)-\dfrac{1}{4}*\sin(85^\circ)}{\sin(75^\circ)} \\\\ &=& \dfrac{\dfrac{1}{4}*\sin(75^\circ)}{\sin(75^\circ)} \\\\ &=& \mathbf{\dfrac{1}{4}} \\ \hline \end{array}\)

 

 

laugh

20 июл. 2020 г.
 #17
avatar+26398 
+3
17 июл. 2020 г.