heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+2

Using the Euclidian Algorithm, calculate \(\gcd(2^{60}-1, 2^{80}-1)\)

 

 

Formula: \( \boxed{ \gcd(a,b) = \gcd(b,a) \\~\\ \gcd(a,b) = \gcd(a-n*b,b) \\~\\ \gcd(a,a) = a }\)

 

 

\(\begin{array}{|rcll|} \hline && \mathbf{\gcd\left( 2^{60}-1,~ 2^{80}-1 \right)} \\ &=& \gcd\left( 2^{80}-1,~ 2^{60}-1 \right) \\ && \begin{array}{|rcll|} \hline 2^{80}-1 &=& 1+2+2^2+2^3+\ldots+2^{79} \\ 2^{60}-1 &=& 1+2+2^2+2^3+\ldots+2^{59} \\ \hline 2^{20}*(2^{60}-1) &=& 2^{20}+2^{21}+\ldots+2^{79} \\ \hline \mathbf{ (2^{80}-1)-2^{20}*(2^{60}-1)} &=& \mathbf{1+2+2^2+2^3+\ldots+2^{19}} \\ \mathbf{ (2^{80}-1)-2^{20}*(2^{60}-1)} &=& \mathbf{2^{20}-1} \\ \hline \end{array} \\ &=& \gcd\left( (2^{80}-1)-2^{20}*(2^{60}-1),~ 2^{60}-1 \right) \\ &=& \mathbf{ \gcd\left( 2^{20}-1,~ 2^{60}-1 \right) } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \gcd\left( 2^{20}-1,~ 2^{60}-1 \right) } \\ &=& \mathbf{ \gcd\left( 2^{60}-1,~ 2^{20}-1 \right) } \\ && \begin{array}{|rcll|} \hline 2^{60}-1 &=& 1+2+2^2+2^3+\ldots+2^{59} \\ 2^{20}-1 &=& 1+2+2^2+2^3+\ldots+2^{19} \\ \hline 2^{40}*(2^{20}-1) &=& 2^{40}+2^{41}+\ldots+2^{59} \\ \hline \mathbf{ (2^{60}-1)-2^{40}*(2^{20}-1)} &=& \mathbf{1+2+2^2+2^3+\ldots+2^{39}} \\ \mathbf{ (2^{60}-1)-2^{40}*(2^{20}-1)} &=& \mathbf{2^{40}-1} \\ \hline \end{array} \\ &=& \gcd\left( (2^{60}-1)-2^{40}*(2^{20}-1),~ 2^{20}-1 \right) \\ &=& \mathbf{ \gcd\left( 2^{40}-1,~ 2^{20}-1 \right) } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \gcd\left( 2^{40}-1,~ 2^{20}-1 \right) } \\ && \begin{array}{|rcll|} \hline 2^{40}-1 &=& 1+2+2^2+2^3+\ldots+2^{39} \\ 2^{20}-1 &=& 1+2+2^2+2^3+\ldots+2^{19} \\ \hline 2^{20}*(2^{20}-1) &=& 2^{20}+2^{21}+\ldots+2^{39} \\ \hline \mathbf{ (2^{40}-1)-2^{20}*(2^{20}-1)} &=& \mathbf{1+2+2^2+2^3+\ldots+2^{19}} \\ \mathbf{ (2^{40}-1)-2^{20}*(2^{20}-1)} &=& \mathbf{2^{20}-1} \\ \hline \end{array} \\ &=& \gcd\left( (2^{40}-1)-2^{20}*(2^{20}-1),~ 2^{20}-1 \right) \\ &=& \mathbf{ \gcd\left( 2^{20}-1,~ 2^{20}-1 \right) } \\ &=& 2^{20}-1 \\ &=& \mathbf{1048575} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\gcd\left( 2^{60}-1,~ 2^{80}-1 \right)} \\ &=& \mathbf{ \gcd\left( 2^{60}-1,~ 2^{20}-1 \right) } \\ &=& \mathbf{ \gcd\left( 2^{40}-1,~ 2^{20}-1 \right) } \\ &=& \mathbf{ \gcd\left( 2^{20}-1,~ 2^{20}-1 \right) } \\ &=& \mathbf{2^{20}-1} \\ &=& \mathbf{1048575} \\ \hline \end{array}\)

 

laugh

31 июл. 2020 г.
 #2
avatar+26398 
+2

Solve \(\large \sqrt{x+14-8\sqrt{x-2}} + \sqrt{x+23-10\sqrt{x-2}} = 3\)

 

Substitute: \(\begin{array}{|rcll|} \hline \mathbf{ y } &=& \mathbf{\sqrt{x-2}} \qquad \text{or} \qquad y^2 &=& x-2 \\ \mathbf{ x } &=& \mathbf{y^2+2} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \sqrt{x+14-8\sqrt{x-2}} + \sqrt{x+23-10\sqrt{x-2}} &=& 3 \\\\ \sqrt{y^2+2+14-8y} + \sqrt{y^2+2+23-10y} &=& 3 \\\\ \sqrt{y^2-8y+16} + \sqrt{y^2-10y+25} &=& 3 \\\\ && \boxed{ y^2-8y+16 = (y-4)^2=(4-y)^2} \\ && \boxed{ y^2-10y+25 = (y-5)^2=(5-y)^2} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \text{Case }1: \\ & y^2-8y+16 = (y-4)^2 \\ & y^2-10y+25 = (y-5)^2 \\ \hline & \sqrt{(y-4)^2} + \sqrt{(y-5)^2 } &=& 3 \\\\ & y-4 + y-5 &=& 3 \\\\ & 2y-9 &=& 3 \\\\ & 2y &=& 9+3 \\\\ & 2y &=& 12 \\\\ & \mathbf{y} &=& \mathbf{6} \\ \hline \end{array} \begin{array}{|lrcll|} \hline \text{Case }2: \\ & y^2-8y+16 = (y-4)^2 \\ & y^2-10y+25 = (5-y)^2 \\ \hline & \sqrt{(y-4)^2} + \sqrt{(5-y)^2 } &=& 3 \\\\ & y-4 + 5-y &=& 3 \\\\ & \mathbf{1} &\ne& \mathbf{3} \qquad \text{no solution!} \\ \hline \end{array}\\ \begin{array}{|lrcll|} \hline \text{Case }3: \\ & y^2-8y+16 = (4-y)^2 \\ & y^2-10y+25 = (5-y)^2 \\ \hline & \sqrt{(4-y)^2} + \sqrt{(5-y)^2 } &=& 3 \\\\ & 4-y + 5-y &=& 3 \\\\ & -2y+9 &=& 3 \\\\ & 2y &=& 9-3 \\\\ & 2y &=& 6 \\\\ & \mathbf{y} &=& \mathbf{3} \\ \hline \end{array} \begin{array}{|lrcll|} \hline \text{Case }4: \\ & y^2-8y+16 = (4-y)^2 \\ & y^2-10y+25 = (y-5)^2 \\ \hline & \sqrt{(4-y)^2} + \sqrt{(y-5)^2 } &=& 3 \\\\ & 4-y + y-5 &=& 3 \\\\ & \mathbf{-1} &\ne& \mathbf{3} \qquad \text{no solution!} \\ \hline \end{array}\\\)


\(\begin{array}{|rcll|} \hline \text{First solution}: \\ y= 6 \\ \hline x &=& y^2+2 \\ x &=& 6^2+2 \\ \mathbf{x} &=& \mathbf{38} \\ \hline \end{array} \begin{array}{|rcll|} \hline \text{Second solution}: \\ y= 3 \\ \hline x &=& y^2+2 \\ x &=& 3^2+2 \\ \mathbf{x} &=& \mathbf{11} \\ \hline \end{array}\)

 

laugh

31 июл. 2020 г.
 #1
avatar+26398 
+2

A and B are angles in the interval \(0 < A, B < 45^\circ\).
If \(\cos(A + B) = \dfrac{4}{5}\) and \(\sin(A - B) = \dfrac{5}{13}\), find \(\tan(2A)\).

 

\(\begin{array}{|rcll|} \hline \cos(A + B) &=& \dfrac{4}{5} \\ A + B &=& \arccos\left( \dfrac{4}{5} \right) \qquad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \sin(A - B) &=& \dfrac{5}{13} \\ A - B &=& \arcsin\left( \dfrac{5}{13} \right) \qquad (2) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (A + B) +(A - B) &=& \arccos\left( \dfrac{4}{5} \right)+\arcsin\left( \dfrac{5}{13} \right) \\ 2A &=& \arccos\left( \dfrac{4}{5} \right)+\arcsin\left( \dfrac{5}{13} \right) \\ \tan(2A) &=& \tan\Bigg( \arccos\left( \dfrac{4}{5} \right)+\arcsin\left( \dfrac{5}{13} \right) \Bigg) \\ \tan(2A) &=& \tan\Bigg( 36.8698976458^\circ+22.6198649480^\circ \Bigg) \\ \tan(2A) &=& \tan\Bigg( 59.4897625939^\circ \Bigg) \\ \tan(2A) &=& 1.69696969697 \\\\ \mathbf{\tan(2A)} &=& \mathbf{\dfrac{56}{33}} \\ \hline \tan(2A) &=& \tan\Bigg( 59.4897625939^\circ \Bigg) \\ 2A &=& 59.4897625939^\circ \\ \mathbf{A} &=& \mathbf{29.7448812969^\circ} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (A + B) -(A - B) &=& \arccos\left( \dfrac{4}{5} \right)-\arcsin\left( \dfrac{5}{13} \right) \\ 2B &=& \arccos\left( \dfrac{4}{5} \right)-\arcsin\left( \dfrac{5}{13} \right) \\ \tan(2B) &=& \tan\Bigg( \arccos\left( \dfrac{4}{5} \right)-\arcsin\left( \dfrac{5}{13} \right) \Bigg) \\ \tan(2B) &=& \tan\Bigg( 36.8698976458^\circ-22.6198649480^\circ \Bigg) \\ \tan(2B) &=& \tan\Bigg( 14.2500326978^\circ \Bigg) \\ \tan(2B) &=& 0.25396825397 \\\\ \mathbf{\tan(2B)} &=& \mathbf{\dfrac{16}{63}} \\ \hline \tan(2B) &=& \tan\Bigg( 14.2500326978^\circ \Bigg) \\ 2B &=& 14.2500326978^\circ \\ \mathbf{B} &=& \mathbf{7.12501634890^\circ} \\ \hline \end{array}\)

 

 

laugh

30 июл. 2020 г.