heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+3

Chords \(\overline{UV}\), \(\overline{WX}\), and \(\overline{YZ}\) of a circle are parallel.
The distance between chords \(\overline{UV}\) and \(\overline{WX}\) is 4,
and the distance between chords \(\overline{WX}\) and \(\overline{YZ}\) is also 4.
If \(\overline{UV}\) = 78 and \(\overline{YZ}\) = 50, then find \(\overline{WX}\).

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{r} &=& \mathbf{a+b+8} \\ \hline & \mathbf{39^2} &=& \mathbf{(b+8)(a+r)} \\ & 39^2 &=& (b+8)(a+a+b+8) \\ (2) & \mathbf{39^2} &=& \mathbf{(b+8)(2a+b+8)} \\ \hline & \mathbf{25^2} &=& \mathbf{b(8+a+r)} \\ & 25^2 &=& b(8+a+a+b+8) \\ (3) & \mathbf{25^2} &=& \mathbf{b(2a+b+16)} \\ \hline & \left(\dfrac{\overline{WX}}{2}\right)^2 &=& (b+4)(4+a+r) \\ & \left(\dfrac{\overline{WX}}{2}\right)^2 &=& (b+4)(4+a+a+b+8) \\ (4) & \mathbf{\left(\dfrac{\overline{WX}}{2}\right)^2} &=& \mathbf{(b+4)(2a+b+12)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (3): & \mathbf{25^2} &=& \mathbf{b(2a+b+16)} \\ & 625 &=& b(2a+b+16) \\ & 625 &=& 2ab+b(b+16) \\ & 2ab &=& 625- b(b+16) \\ & \mathbf{a} &=& \mathbf{\dfrac{625- b(b+16)}{2b}} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (2): & \mathbf{39^2} &=& \mathbf{(b+8)(2a+b+8)} \\ & 1521 &=& (b+8)(2a+b+8) \quad | \quad \mathbf{a=\dfrac{625- b(b+16)}{2b}} \\ & 1521 &=& (b+8)\left(2\dfrac{\Big(625- b(b+16)\Big)}{2b}+b+8 \right) \\ & 1521 &=& (b+8)\left(\dfrac{ 625- b(b+16) }{b}+b+8 \right) \\ & 1521 &=& (b+8)\left(\dfrac{625}{b}- (b+16)+b+8 \right) \\ & 1521 &=& (b+8)\left(\dfrac{625}{b}-8 \right) \\ & 1521 &=& (b+8)\dfrac{(625-8b)}{b} \\ & 1521b &=& (b+8)( 625-8b) \\ & 1521b &=& 625b-8b^2+8*625-64b \\ & 8b^2 + 960b - 5000 &=& 0 \quad | \quad : 8 \\ & \mathbf{b^2 + 120b - 625} &=& \mathbf{0} \\ \hline &b &=& \dfrac{-120\pm \sqrt{120^2-4*(-625) } }{2} \\ &b &=& \dfrac{-120\pm \sqrt{16900} }{2} \\ &b &=& \dfrac{-120\pm 130 }{2} \\\\ &\mathbf{b} &=& \mathbf{\dfrac{-120+ 130 }{2}} \\ &\mathbf{b} &=& \mathbf{5} \\\\ &\mathbf{b} &=& \mathbf{\dfrac{-120- 130 }{2}} \quad | \quad \text{no solution } b < 0!\\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{a} &=& \mathbf{\dfrac{625- b(b+16)}{2b}} \quad | \quad \mathbf{b=5} \\\\ a &=& \dfrac{625- 5(5+16)}{2*5} \\\\ a &=& \dfrac{625- 5*21}{10} \\\\ a &=& \dfrac{625- 105}{10} \\\\ a &=& \dfrac{520}{10} \\\\ \mathbf{a} &=& \mathbf{52} \\ \hline \end{array}\)

 

\(\mathbf{\overline{WX}=\ ?}\)

\(\begin{array}{|rcll|} \hline (4): & \mathbf{\left(\dfrac{\overline{WX}}{2}\right)^2} &=& \mathbf{(b+4)(2a+b+12)} \quad | \quad a=52,\ b=5 \\ & \left(\dfrac{\overline{WX}}{2}\right)^2 &=& (5+4)(2*52+5+12) \\ & \left(\dfrac{\overline{WX}}{2}\right)^2 &=& 9*121 \\ & \left(\dfrac{\overline{WX}}{2}\right)^2 &=& 1089 \\\\ & \dfrac{\overline{WX}}{2} &=& \sqrt{1089} \\\\ & \dfrac{\overline{WX}}{2} &=& 33 \\\\ &\mathbf{\overline{WX}} &=& \mathbf{66} \\ \hline \end{array}\)

 

laugh

13 авг. 2020 г.
 #2
 #1
avatar+26398 
+2

1.

\(f(x) = x^{10}+5x^9-8x^8+7x^7-x^6-12x^5+4x^4-8x^3+12x^2-5x-5\)
 

Without using long division, find the remainder \((=r)\)  when \(f(x)\)  is divided by \(x^2-1\).

 

Let \(x^2-1 = (x-1)(x+1)\)

 

\(\begin{array}{|lrclrcl|} \hline & f(x) &=& q(x)(x-1)(x+1) + r \quad | \quad \mathbf{r=ax+b} \\ & \mathbf{ f(x) } &=& \mathbf{ q(x)(x-1)(x+1) + ax+b } \\ \hline x=1:& \mathbf{ f(1) } &=& \mathbf{ q(1)(1-1)(1+1) + a*1+b } \\ & f(1)&=& q(1)*0 + a+b \\ & f(1)&=& a+b \\ &&& \small {f(1) = 1*1^{10}+5*1^9-8*1^8+7*1^7-1^6-12*1^5+4*1^4-8*1^3+12*1^2-5*1-5 }\\ &&& f(1) = 1+5-8+7-1-12+4-8+12-5-5 \\ &&& f(1) = -8+7+4-8-5 \\ &&& f(1) = 11-21 \\ &&& f(1) = -10 \\ & -10 &=& a+b \\ & \mathbf{a+b} &=& \mathbf{-10} \qquad (1) \\ \hline x=-1:& \mathbf{ f(-1) } &=& \mathbf{ q(-1)(-1-1)(-1+1) + a*(-1)+b } \\ & f(-1)&=& q(-1)*0 - a+b \\ & f(-1)&=& - a+b \\ &&& \small{f(-1) = 1*(-1)^{10}+5*(-1)^9-8*(-1)^8+7*(-1)^7-(-1)^6-12*(-1)^5+4*(-1)^4-8*(-1)^3+12*(-1)^2-5*(-1)-5} \\ &&& f(-1) = 1-5-8-7-1+12+4+8+12+5-5 \\ &&& f(-1) =12+4 \\ &&& f(-1) = 16 \\ & 16 &=& - a+b \\ & \mathbf{-a+b} &=& \mathbf{16} \qquad (2)\\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{a+b} &=& \mathbf{-10} \qquad (1) \\ & \mathbf{-a+b} &=& \mathbf{16} \qquad (2)\\ \hline (1)+(2): & a+b-a+b&=&-10+16 \\ & 2b&=& 6 \\ & \mathbf{b} &=& \mathbf{3} \\ \hline (1)-(2): & a+b-(-a+b) &=& -10-16 \\ & 2a &=& -26 \\ & \mathbf{a} &=& \mathbf{-13} \\ \hline & r &=& ax+b \\ & \mathbf{ r } &=& \mathbf{-13x+3} \\ \hline \end{array}\)

 

The remainder when \(f(x)\) is divided by \(x^2-1\) is \(\mathbf{-13x+3}\)

 

laugh

12 авг. 2020 г.