Melody

avatar
Имя пользователяMelody
Гол118691
Membership
Stats
Вопросов 900
ответы 33647

-6
837
3
avatar+118691 
Melody  11 февр. 2022 г.
 #5
avatar+118691 
+2

Hi jsaddern and catmg,     laugh

 

I will try and explain how I was thinking.

 

I know this.

\((10^{n+1}+1)>(a_n \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} + \ldots + a_0 \cdot 10^0)\)

 

So I know that if    \((10^{n+1}+1)(a_n \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} + \ldots + a_0 \cdot 10^0)\)   is a perfect sqare then

 

\((10^{n+1}+1)\)     must have at least one perfect square factor.   Can you see that?

 

So let         \((10^{n+1}+1) =a^2b\)         where a and b are rational positve numbers

then   \((a_n \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} + \ldots + a_0 \cdot 10^0)\)    must be     bc^2   where b and c are rational positive numbers

and  a>c

That would make    \((10^{n+1}+1)(a_n \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} + \ldots + a_0 \cdot 10^0)= a^2b*bc^2=(abc)^2\)

 

So I googled online for a number of the form  10^n+1  with a perfect square factor.

I found this site:

https://math.stackexchange.com/questions/1188750/prove-that-all-numbers-10n-1-are-square-free

which said that    10^11 +1  has a factor of 11^2

 

then I simply divided   (10^11+2) by  121 to get the other factor.

 

(10^11+1)/121 = 826446281

so    (10^11+1)*826446281 = 11^2 * 826446281^2 which is a perfect square

 

826446281*4 = 3 305 785 124                   so      (10^11+1)* 3 305 785 124    is anothother one

3305785124*9 = 29 752 066 116               so      (10^11+1)*  29 752 066 116  is another one    

3305785124*16 = 52 892 561 984             so      (10^11+1)*  52 892 561 984  is another one.

52892561984*25 = 1 322 314 049 600        TOO big 

 

So now I have found four examples that show the statement is not true.

 

I hope that all makes sense to you.  (hopefully there is no flaw in my logic)    laugh

13 мар. 2022 г.