What is the smallest distance between the origin and a point on the graph?
Hello Guest!
\(y = \frac{1}{\sqrt{2}} (x^2 - 13)\\ y=\frac{x^2}{\sqrt{2}}-\frac{13}{\sqrt{2}}\\ y'=x\cdot\sqrt{2}\ |\ the\ perpendicular\ through\ the\ origin\ is:\\ y=-\frac{1}{\sqrt{2}}x\\ \frac{x^2}{\sqrt{2}}-\frac{13}{\sqrt{2}}=-\frac{1}{\sqrt{2}}x\ |\ \cdot \sqrt{2}\\ x^2+x-13=0\)
\(x\in \{-\frac{1}{2}-\frac{\sqrt{53}}{2},\color{blue}\frac{\sqrt{53}}{2}-\frac{1}{2}\}\)
The smallest distance between the origin and a point on the graph
\(y = \frac{1}{\sqrt{2}} (x^2 - 13)\) is 3.14005. Not correct! See answer 7#.
