Let R be the intersection of the medians
 DR  =1/3  of DP  = 6
 ER  =1/3  of EQ  = 8
 So....since the medians are perpendicular....then  DE  is the hypotenuse of right triangle DRE  
 So....call S  the midpoint  of DE...so  DS  = 5
 So.... SF  is another median
 The sine of RDE  = 8/10  = 4/5
 cos RDE   = 3/5
  
  
  
 So the distance  from  R to S  can be found using the Law of Cosines  as
 RS^2  = DS^2 + DR^2 -2(DS * DR)cos(RDE)
 RS^2  = 5*2 + 6^2  - 2(30)cosRDE
 RS^2  = 61 - 60(3/5)
 RS^2  = 61  - 36
 RS^2  = 25
 RS  = 5
  
 But  RS  = 1/3  of SF....so SF  = 15
  
 We need to find  sin DSR
  
 Using the Law of Sines we have
  
 sinDSR / DR  = sinRDE/ RS
 sinDSR/6  = sinRDE / 5
 sinDSR / 6   = (4/5) / 5
 sinDSR / 6  = 4/25
 sinDSR  = 24/25
  
 And the cos DSR   = √ [1  - (24/25)^2 ]  = √ [625 - 576 ] / 25  = √49 / 25 =  7/25
  
 So...we can find DF with the Law of Cosines as
  
 DF^2  = DS^2  + SF^2  - 2(DS*SF)cos(DSR)
 DF^2  = 5^2  + 15^2  - 2(5*15)(7/25)
 DF^2  = 250  - 2*3*7
 DF  = 250 - 42
 DF^2  = 208
  
 DF = √208  = 4√13
  
  
  
  
 