This triangle is obtuse.. altitude CD falls outside triangle ABC as shown
Let x be the distance from A to D
We have that
DC^2 = BC^2 + (AB + x)^2 = 20^2 - (17+x)^2
DC^2 = (AC)^2 - x^2 = 8^2 - x^2
So
20^2 - (17+x)^2 = 8^2 - x^2
400 - x^2 - 34x -289 = 64 - x^2
-34x = 289 + 64 - 400
-34x = -47
x = 47/34
DC = sqrt [8^2 - (47/34)^2 ]
Area of ACD = (1/2) (AD) (CD) = (1/2)(47/34)(sqrt [ 8^2 - (47/34)^2 ] = 5.446