log (y) + log (2) = log (a^(-x) + a^x)
log (2y) = log ( 1/a^x + a^x)
log (2y) = log [ (1+ a^(2x)) / a^x]
2y = ( 1 + a^(2x) ) / a^x
2y (a^x) = 1 + (a^x)^2 let a^x = m
2y (m) = 1 + m^2
m^2 - (2y)m + 1 = 0
m^2 - (2y)m + y^2 = - 1 + y^2
(m - y)^2 = y^2 -1 take the positive root
m - y = sqrt [y^2 -1 ]
m = sqrt [ y^2 - 1 ] + y
a^x = sqrt [ y^2 - 1 ] + y
log a^x = log [ sqrt ( y^2 -1) + y ]
x log a = log [ sqrt ( y^2 - 1) + y ]
x = log [ sqrt ( y^2 - 1) + y ]
____________________ , { y ≥ 1 }
log a
