\(\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2} \)
Simplify as
rs (rs)^2 + rt (rt)^2 + st (st)^2
________________________ =
(rst)^2
(rs)^3 + (rt)^3 + (st)^3
_____________________
(rst)^2
By Viete
r + s + t = 4
(rs + rt + st) = -7
(rst) = -12
And
(rs + rt + st)^3 = (-7)^3 = -343
( rs + rt + st)^3 =
[ (rs)^3 + (rt)^3 + (st)^3 ] + 3rst [ r^2s + r^2t] + 3rst [ s^2r + s^2t] + 3rst [ t^2r + t^2s] + 6(rst)^2 =
[ (rs)^3 + (rt)^3 + (st)^3 ] + 3(-12) [ r ( rs + rt)] + 3(-12) [ s (rs + st)] + 3(-12) [ t(rt + st] + 6(-12)^2 =
[ (rs)^3 + (rt)^3 + (st)^3 ] - 36 [ r(rs + rt) + s(rs + st) + t(rt + st) ] + 864
Note: [ rs + rt + st] = -7
So
rs + rt = -7 - st
rs + st = -7 - rt
rt + st = -7 - rs
So
[(rs)^3 + (rt)^3 + (st)^3 ] - 36 ( r [ -7 - st] + s [-7 - rt] + t [ -7 -rs] ) + 864 = -343
[ (rs)^3 + (rt)^3 + (st)^3 ] - 36 ( -7 [ r + s + t ] - 3 (rst) ] = -1207
[ (rs)^3 + (rt)^3 + (st)^3 ] - 36 [ -7(4) - 3(-12) ] = -1207
[ (rs)^3 + (rt)^3 + (st)^3 ] - 36 [ -28 + 36 ] = -1207
[ (rs)^3 + (rt)^3 + (st)^3 ] - 36(8) =-1207
[ (rs)^3 + (rt)^3 + (st)^3] = - 288 = -1207
[ (rs)^3 + (rt)^3 + (st)^3] = -919
So
rs + rt + st
__ ___ ___ =
r^2 s^2 r^2
[ rs (rs)^2 + rt(rt)^2 + st(st)^2]
________________________ =
(rst)^2
[ (rs)^3 + (rt)^3 + (st)^3]
___________________ =
(rst)^2
-919
____
144
