heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

2.

In triangle ABC, S is a point on side BC such that BS:SC = 1:2,

and T is a point on side AC such that AT:TC = 4:3.
Let U be the intersection of AS and BT.

 

Find \(\dfrac{AU}{US}\)

 

\(\begin{array}{|rcll|} \hline \vec{u} &=& \vec{A}-\vec{C} \\ \vec{v} &=& \vec{B}-\vec{C} \\ \hline \vec{U}-\vec{C} &=& \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) \quad | \quad \lambda \text{ is a real value} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \quad | \quad \dfrac{US}{AS} \text{ is a real value} \\ \hline \vec{U}-\vec{C} = \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \\ \dfrac{3}{7}\vec{u}+ \lambda\left( \vec{v}-\dfrac{3}{7}\vec{u} \right) &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \\ \dfrac{3}{7}\vec{u}+ \lambda \vec{v}-\dfrac{3}{7}\lambda\vec{u} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\vec{u}-\dfrac{2}{3}\dfrac{US}{AS}\vec{v} \\ \vec{u}\left(\underbrace{\dfrac{3}{7}-\dfrac{3}{7}\lambda-\dfrac{US}{AS} }_{=0}\right) &=& \vec{v}\left(\underbrace{\dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda }_{=0} \right) \quad | \quad \vec{u} \text{ and } \vec{v}\text{ are independent} \\ \hline \dfrac{3}{7}-\dfrac{3}{7}\lambda-\dfrac{US}{AS} &=& 0 \\ \quad |\quad \cdot \dfrac{7}{3} \\ 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} &=& 0 \qquad (1) \\\\ \dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda &=& 0 \qquad (2) \\ \hline (1)-(2): \qquad 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} - \left( \dfrac{2}{3}-\dfrac{2}{3}\dfrac{US}{AS}-\lambda \right) &=& 0 \\ 1- \lambda-\dfrac{7}{3}\dfrac{US}{AS} - \dfrac{2}{3}+\dfrac{2}{3}\dfrac{US}{AS}+\lambda &=& 0 \\ \dfrac{1}{3} -\dfrac{5}{3}\dfrac{US}{AS} &=& 0 \\ \dfrac{5}{3}\dfrac{US}{AS} &=& \dfrac{1}{3} \quad | \quad \cdot \dfrac{3}{5} \\ \mathbf{ \dfrac{US}{AS} } &=& \mathbf{\dfrac{1}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{AU}{AS} &=& \left( 1-\dfrac{US}{AS} \right) \\ \dfrac{AU}{AS} &=& \left( 1-\dfrac{1}{5} \right) \\ \mathbf{ \dfrac{AU}{AS} } &=& \mathbf{\dfrac{4}{5}} \\ \hline \dfrac{AU}{US} &=& \dfrac{ \dfrac{AU}{AS} }{ \dfrac{US}{AS} } \\ \dfrac{AU}{US} &=& \dfrac{ \dfrac{4}{5} }{ \dfrac{1}{5} } \\ \mathbf{ \dfrac{AU}{US} } &=& \mathbf{4} \\ \hline \end{array}\)

 

laugh

4 авг. 2019 г.
 #6
avatar+26398 
+2
2 авг. 2019 г.
 #1
avatar+26398 
+2

Find the remainder when the polynomial \(\large{x^{1000}}\) is divided by the polynomial \((x^2+1)(x+1)\)

 

\(\begin{array}{|lrcll|} \hline &\mathbf{ x^{1000} }&=& \mathbf{(x^2+1)(x+1)q(x) +\underbrace{ax^2+bx+c}_{=r(x)}} \\ \hline x=-1:& (-1)^{1000} &=& \left((-1)^2+1\right)(-1+1)q(x) + a(-1)^2+b(-1)+c \\ & 1 &=& 0 + a-b+c \\ &\mathbf{ a-b+c} &=& \mathbf{1} \qquad (1) \\ \hline x=i:& (i)^{1000} &=& (i^2+1)(i+1)q(x) + ai^2+bi+c \quad | \quad \boxed{i^2=-1\\i^{1000}=\left(i^2\right)^{500}=\left(-1\right)^{500}=1} \\ & 1 &=& 0 -a+bi+c \\ &\mathbf{-a+bi+c} &=& \mathbf{1} \qquad (2) \\ \hline x=-i:& (-i)^{1000} &=& \left((-i)^2+1\right)(-i+1)q(x) + a(-i)^2+b(-i)+c \quad | \quad \boxed{(-i)^2=-1\\ (-i)^{1000}=1} \\ & 1 &=& 0 -a-bi+c \\ &\mathbf{-a-bi+c} &=& \mathbf{1} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &\mathbf{ a-b+c} &=& \mathbf{1} \qquad (1) \\ &\mathbf{-a+bi+c} &=& \mathbf{1} \qquad (2) \\ &\mathbf{-a-bi+c} &=& \mathbf{1} \qquad (3) \\ \hline (2)+(3): & -a+bi+c+-a-bi+c &=& 1+1 \\ &-2a+2c&=& 2 \quad &| \quad :2 \\ &- a+ c&=& 1 \\ & \mathbf{c} &=& \mathbf{1+a} \qquad (4) \\ \hline (1) : & a-b+c &=& 1 \quad &| \quad \boxed{c = 1+a} \\ & a-b+1+a &=& 1 \\ & 2a-b &=& 0 \\ & \mathbf{b} &=& \mathbf{2a} \qquad (5) \\ \hline (2) : & -a+bi+c &=& 1 \quad &| \quad \boxed{b = 2a,\ c = 1+a}\\ & -a+2ai+1+a &=& 1 \\ & 2ai &=& 0 \quad &| \quad :2i \\ &\mathbf{a} &=& \mathbf{0} \\ & b &=& 2a \\ & b &=& 2*0 \\ &\mathbf{b} &=& \mathbf{0} \\ & c&=& 1+a \\ & c &=& 1+0 \\ &\mathbf{c} &=& \mathbf{1} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline r(x) &=& ax^2+bx+c \\ r(x) &=& 0*x^2+0*x +1 \\ \mathbf{r(x)} &=& \mathbf{1} \\ \hline \end{array}\)

 

The remainder is 1

 

laugh

1 авг. 2019 г.
 #2
avatar+26398 
+2

In the diagram, \(D\) and \(E\) are the midpoints of \(\overline{AB}\) and \(\overline{BC}\) respectively.

Determine the sum of the \(x\) and \(y\) coordinates of \(F\), the point of intersection of \(\overline{AE}\) and \(\overline{CD}\).

 

\(\text{Let $\vec{A} =\dbinom06 $} \\ \text{Let $\vec{D} =\dfrac{\vec{A}}{2} = \dbinom03 $} \\ \text{Let $\vec{C} =\dbinom80 $} \\ \text{Let $\vec{E} =\dfrac{\vec{C}}{2} = \dbinom40 $} \\ \text{Let $\vec{F} = \dbinom x y $} \)

 

\(\begin{array}{|lrcll|} \hline (1) & \vec{F} &=& \vec{E}+\lambda(\vec{A}-\vec{E}) \quad \lambda \text{ is a scalar } \\ (2) & \vec{F} &=& \vec{D}+\mu(\vec{C}-\vec{D}) \quad \mu \text{ is a scalar } \\ \hline &\vec{F} = \vec{E}+\lambda(\vec{A}-\vec{E}) &=& \vec{D}+\mu(\vec{C}-\vec{D}) \\ & \mathbf{ \vec{E}+\lambda(\vec{A}-\vec{E}) } &=& \mathbf{\vec{D}+\mu(\vec{C}-\vec{D})} \\ & \lambda(\vec{A}-\vec{E})-\mu(\vec{C}-\vec{D}) &=& \vec{D}-\vec{E} \\\\ &&& \boxed{ \vec{A}-\vec{E} =\dbinom06-\dbinom40=\dbinom{-4}{6} \\ \vec{C}-\vec{D} =\dbinom80-\dbinom03=\dbinom{8}{-3} \\ \vec{D}-\vec{E} =\dbinom03-\dbinom40=\dbinom{-4}{3} }\\\\ & \lambda\dbinom{-4}{6}-\mu\dbinom{8}{-3} &=& \dbinom{-4}{3} \quad | \quad \times \dbinom{3}{8} \\\\ & \lambda\dbinom{-4}{6}\dbinom{3}{8}-\mu\underbrace{\dbinom{8}{-3}\dbinom{3}{8}}_{=0} &=& \dbinom{-4}{3}\dbinom{3}{8} \\ & \lambda\dbinom{-4}{6}\dbinom{3}{8} &=& \dbinom{-4}{3}\dbinom{3}{8} \\ & \lambda(-12+48) &=& -12+24 \\ & \lambda(36) &=& 12 \quad | \quad : 12 \\ & 3\lambda &=& 1 \\ &\mathbf{ \lambda } &=& \mathbf{ \dfrac{1}{3} } \\ \hline & \vec{F} &=& \vec{E}+\lambda(\vec{A}-\vec{E}) \\ & \vec{F} &=& \dbinom40+\dfrac{1}{3}\dbinom{-4}{6} \\ & \vec{F} &=& \begin{pmatrix} 4-\dfrac{4}{3} \\ \dfrac{6}{3} \end{pmatrix} \\ & \mathbf{\vec{F}} &=& \mathbf{ \begin{pmatrix} \dfrac{8}{3} \\ 2 \end{pmatrix} } \\\\ & x+y &=& \dfrac{8}{3} + 2 \\ &\mathbf{ x+y } &=& \mathbf{\dfrac{14}{3}} \\ \hline \end{array}\)

 

laugh

1 авг. 2019 г.