heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+3

Suppose a,b,c are positive reals such that

ab=2a + 2b,

ac= 3a + 3c,

bc = 4b + 4c

Find a+b+c

 

\(\begin{array}{|lrcll|} \hline (1) & 2a + 2b &=& ab \\ & 2a-ab &=& -2b \\ & a(2-b) &=& -2b \\ & a &=& \dfrac{-2b}{2-b} \\ &\mathbf{ a } &=& \mathbf{ \dfrac{2b}{b-2} } \\ \hline (3) & 4b + 4c &=& bc \\ & 4c-bc &=& -4b \\ & c(4-b) &=& -4b \\ & c &=& \dfrac{-4b}{4-b} \\ &\mathbf{ c } &=& \mathbf{ \dfrac{4b}{b-4} } \\ \hline (2) & 3a + 3c &=& ac \\ & 3(a+c) &=& ac \\ & 3 \left(\dfrac{2b}{b-2}+\dfrac{4b}{b-4} \right) &=& \left(\dfrac{2b}{b-2}\right) \left(\dfrac{4b}{b-4}\right) \\ & 3 \left(\dfrac{2b(b-4)+4b(b-2)}{(b-2)(b-4)} \right) &=& \dfrac{8b^2}{(b-2)(b-4)} \\ & 3 \Big(2b(b-4)+4b(b-2)\Big) &=& 8b^2 \\ & 6b(b-4)+12b(b-2) &=& 8b^2 \quad | \quad : 2 \\ & 3b(b-4)+6b(b-2) &=& 4b^2 \\ & 3b^2-12b+6b^2-12b &=& 4b^2 \\ & 5b^2-24b &=& 0 \\ & b(5b-24) &=& 0 \\\\ & b &=& 0 \quad | \quad \text{no solution, while b is a positive real } \\\\ & 5b-24 &=& 0 \\ & \mathbf{b} &=& \mathbf{\dfrac{24}{5}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{a} &=& \mathbf{ \dfrac{2b}{b-2} } \\\\ a &=& \dfrac{2\times\dfrac{24}{5}}{\dfrac{24}{5}-2} \\\\ a &=& \dfrac{48}{5\times\dfrac{(24-10)}{5}} \\\\ a &=& \dfrac{48}{14} \\\\ \mathbf{a} &=& \mathbf{\dfrac{24}{7}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{c} &=& \mathbf{ \dfrac{4b}{b-4} } \\\\ c &=& \dfrac{4\times\dfrac{24}{5}}{\dfrac{24}{5}-4} \\\\ c &=& \dfrac{96}{5\times\dfrac{(24-20)}{5}} \\\\ c &=& \dfrac{96}{4} \\\\ \mathbf{c} &=& \mathbf{24} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline a+b+c &=& \dfrac{24}{7} + \dfrac{24}{5} + 24 \\ &=& 24\times \left( \dfrac{1}{7} + \dfrac{1}{5} + 1 \right) \\ &=& 24\times \left( \dfrac{47}{35} \right) \\ \mathbf{a+b+c} &=& \mathbf{\dfrac{1128}{35}} \\ \hline \end{array} \)

 

laugh

5 сент. 2019 г.
 #5
avatar+26398 
+2
3 сент. 2019 г.
 #1
avatar+26398 
+2

Find the projection of \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) onto the plane \(3x - y + 4z = 0\).

\(\text{Let $\vec{P}= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$}\)

 

1.

Normal vector \(\mathbf{\vec{n}}\)

\(\begin{array}{|rcll|} \hline \vec{n} &=& \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \quad | \quad \text{plane: }{\color{red}3}x {\color{red}-1}y + {\color{red}4}z = 0 \\ \hline \end{array}\) 

 

2. \(\mathbf{\vec{P}_{Proj.}}\)

\(\begin{array}{|rcll|} \hline \mathbf{\vec{P}_{Proj.}} &=& \mathbf{\vec{P}+\lambda\vec{n}} \\\\ \vec{P}_{Proj.} &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+\lambda\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \\\\ x_{Proj.} &=& 1+3\lambda \\ y_{Proj.} &=& 2-\lambda \\ z_{Proj.} &=& 3+4\lambda \\ \hline \end{array} \)

 

3. \(\mathbf{\lambda}\)

\(\begin{array}{|rcll|} \hline 3x_{Proj.} - y_{Proj.} + 4z_{Proj.} &=& 0 \\ 3(1+3\lambda) - (2-\lambda) + 4(3+4\lambda) &=& 0 \\ 3+9\lambda-2+\lambda+12+16\lambda &=& 0 \\ 26\lambda &=& -13 \\\\ \lambda &=& -\dfrac{13}{26} \\\\ \mathbf{\lambda} &=& -\mathbf{\dfrac{1}{2}} \\ \hline \end{array}\)

 

4.
\(\mathbf{\vec{P}_{Proj.}}\)

\(\begin{array}{|rcll|} \hline \vec{P}_{Proj.} &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+\lambda\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \quad | \quad \lambda = -\dfrac{1}{2} \\\\ &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} -\dfrac{1}{2}\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \\\\ &=& \begin{pmatrix} 1-\dfrac{3}{2} \\\\ 2+\dfrac{1}{2} \\\\ 3-\dfrac{4}{2} \end{pmatrix} \\\\ \mathbf{\vec{P}_{Proj.}}&=& \begin{pmatrix} \mathbf{-\dfrac{1}{2}} \\\\ \mathbf{\dfrac{5}{2}} \\\\ \mathbf{1} \end{pmatrix} \\ \hline \end{array}\)

 

 

laugh

3 сент. 2019 г.