1)
Suppose the function \(f(x,y,z)=xyz\)
is defined for
\(x+y+z=7, x,y,z\geq 0\).
What is the range of \(f(x,y,z)\)?
\(\begin{array}{|rcll|} \hline f(x,y,z) &=& xyz \quad | \quad x+y+z=7 \text{ or } z = 7-x-y \\ &=& xy(7-x-y) \\\\ f(x,y) &=& xy(7-x-y) \\ f(x,y) &=& 7xy-x^2y-xy^2 \\ \hline f_x = \dfrac{\partial f(x,y)}{\partial x} &=& 7y-2xy-y^2 \\ f_y = \dfrac{\partial f(x,y)}{\partial y} &=& 7x-x^2-2xy \\ \hline \end{array}\)
\(\begin{array}{|lrcll|} \hline (1) & f_x=0 &=& 7y-2xy-y^2 \\ (2) & f_y=0 &=& 7x-x^2-2xy \\ \hline (1) & y(7-2x-y) &=& 0 \\ & \mathbf{y} &=& \mathbf{0} \\\\ & 7-2x-y &=& 0 \\ & \mathbf{y} &=& \mathbf{7-2x} \\ \hline (2) & x(7-x-2y) &=& 0 \\ & \mathbf{x} &=& \mathbf{0} \\\\ & 7-x-2y &=& 0 \\ & 7-x-2(y) &=& 0 \\ & 7-x-2(0) &=& 0 \\ & 7-x &=& 0 \\ & \mathbf{x} &=& \mathbf{7} \quad | \quad y=0 \\\\ & 7-x-2(y) &=& 0 \\ & 7-x-2(7-2x) &=& 0 \\ & 7-x-14+4x &=& 0 \\ & 3x &=& 7 \\ & \mathbf{x} &=& \mathbf{\dfrac{7}{3} } \quad | \quad y=7-2x \\\\ \hline & y &=& 7-2x \\ & y &=& 7-2(0) \\ & \mathbf{y} &=& \mathbf{7} \quad | \quad x=0 \\\\ & y &=& 7-2x \\ & y &=& 7-2(7) \\ & \mathbf{y} &=& \mathbf{-7} \quad | \quad x=7 \\\\ & y &=& 7-2x \\ & y &=& 7-2(\dfrac{7}{3}) \\ & \mathbf{y} &=& \mathbf{\dfrac{7}{3} }\quad | \quad x=\dfrac{7}{3} \\ \hline \end{array}\)
\(\begin{array}{|c|c|c|c|c|r|} \hline x&y&z=7-x-y & \text{solution} & f(x,y,z) & \\ \hline 0 &7 &0&&0&\text{minimum} \\ 7 &0 &0&&0&\text{minimum} \\ 7 &-7 &0& \text{no }(y\geq 0!)&& \\ \dfrac{7}{3} & \dfrac{7}{3} & \dfrac{7}{3} && \dfrac{343}{27} & \text{maximum} \\ \hline \end{array}\)
Range of \(f(x,y,z):\ 0\ldots \dfrac{343}{27}\)
