heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2

1)
Suppose the function \(f(x,y,z)=xyz\)
is defined for
\(x+y+z=7, x,y,z\geq 0\).
What is the range of \(f(x,y,z)\)?

 

\(\begin{array}{|rcll|} \hline f(x,y,z) &=& xyz \quad | \quad x+y+z=7 \text{ or } z = 7-x-y \\ &=& xy(7-x-y) \\\\ f(x,y) &=& xy(7-x-y) \\ f(x,y) &=& 7xy-x^2y-xy^2 \\ \hline f_x = \dfrac{\partial f(x,y)}{\partial x} &=& 7y-2xy-y^2 \\ f_y = \dfrac{\partial f(x,y)}{\partial y} &=& 7x-x^2-2xy \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & f_x=0 &=& 7y-2xy-y^2 \\ (2) & f_y=0 &=& 7x-x^2-2xy \\ \hline (1) & y(7-2x-y) &=& 0 \\ & \mathbf{y} &=& \mathbf{0} \\\\ & 7-2x-y &=& 0 \\ & \mathbf{y} &=& \mathbf{7-2x} \\ \hline (2) & x(7-x-2y) &=& 0 \\ & \mathbf{x} &=& \mathbf{0} \\\\ & 7-x-2y &=& 0 \\ & 7-x-2(y) &=& 0 \\ & 7-x-2(0) &=& 0 \\ & 7-x &=& 0 \\ & \mathbf{x} &=& \mathbf{7} \quad | \quad y=0 \\\\ & 7-x-2(y) &=& 0 \\ & 7-x-2(7-2x) &=& 0 \\ & 7-x-14+4x &=& 0 \\ & 3x &=& 7 \\ & \mathbf{x} &=& \mathbf{\dfrac{7}{3} } \quad | \quad y=7-2x \\\\ \hline & y &=& 7-2x \\ & y &=& 7-2(0) \\ & \mathbf{y} &=& \mathbf{7} \quad | \quad x=0 \\\\ & y &=& 7-2x \\ & y &=& 7-2(7) \\ & \mathbf{y} &=& \mathbf{-7} \quad | \quad x=7 \\\\ & y &=& 7-2x \\ & y &=& 7-2(\dfrac{7}{3}) \\ & \mathbf{y} &=& \mathbf{\dfrac{7}{3} }\quad | \quad x=\dfrac{7}{3} \\ \hline \end{array}\)

 

\(\begin{array}{|c|c|c|c|c|r|} \hline x&y&z=7-x-y & \text{solution} & f(x,y,z) & \\ \hline 0 &7 &0&&0&\text{minimum} \\ 7 &0 &0&&0&\text{minimum} \\ 7 &-7 &0& \text{no }(y\geq 0!)&& \\ \dfrac{7}{3} & \dfrac{7}{3} & \dfrac{7}{3} && \dfrac{343}{27} & \text{maximum} \\ \hline \end{array}\)

 

Range of \(f(x,y,z):\ 0\ldots \dfrac{343}{27}\)

 

laugh

1 сент. 2019 г.
 #1
avatar+26398 
+2

Let a,b and c be nonzero real numbers such that a/b + b/c + c/a =7 and b/a + c/b + a/c = 9. 

Find a^3/b^3 + b^3/c^3 + c^3/a^3.

 

\(\begin{array}{|rcll|} \hline && \mathbf{\left( \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right)^3 -3 \left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right) \left(\dfrac{b}{a} + \dfrac{c}{b} + \dfrac{a}{c}\right )} \\\\ &=& \dfrac{a^3}{b^3} + \dfrac{c^3}{a^3} + \dfrac{3a^2}{bc} + \dfrac{3bc}{a^2} + \dfrac{3ac}{b^2} + \dfrac{3b^2}{ac} + \dfrac{3ab}{c^2} + \dfrac{3c^2}{ab} + \dfrac{b^3}{c^3} + 6 \\ && - \left(\dfrac{3a^2}{b c} + \dfrac{3bc}{a^2} + \dfrac{3ac}{b^2} + \dfrac{3b^2}{ac} + \dfrac{3ab}{c^2} + \dfrac{3c^2}{a b} + 9\right) \\\\ &=& \mathbf{\dfrac{a^3}{b^3} + \dfrac{b^3}{c^3} + \dfrac{c^3}{a^3} - 3} \\ \hline \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{a^3}{b^3} + \dfrac{b^3}{c^3} + \dfrac{c^3}{a^3} - 3 } &=& \mathbf{\left( \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right)^3 -3 \left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right) \left(\dfrac{b}{a} + \dfrac{c}{b} + \dfrac{a}{c}\right )} \\\\ \dfrac{a^3}{b^3} + \dfrac{b^3}{c^3} + \dfrac{c^3}{a^3} &=& 3+ \left( \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right)^3 -3 \left(\dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} \right) \left(\dfrac{b}{a} + \dfrac{c}{b} + \dfrac{a}{c}\right ) \\\\ \dfrac{a^3}{b^3} + \dfrac{b^3}{c^3} + \dfrac{c^3}{a^3} &=& 3+ \left( 7 \right)^3 -3 \left(7 \right) \left(9\right ) \\\\ &=& 3+ 343 - 189 \\\\ \mathbf{\dfrac{a^3}{b^3} + \dfrac{b^3}{c^3} + \dfrac{c^3}{a^3} } &=& \mathbf{157} \\ \hline \end{array}\)

 

laugh

30 авг. 2019 г.
 #1
avatar+26398 
+3

Determine the value of  \(\dfrac{2016}{1} + \dfrac{2015}{2} + \dfrac{2014}{3} + \dots + \dfrac{1}{2016} \above 1pt \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2017} \)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \dfrac{2016}{1} + \dfrac{2015}{2} + \dfrac{2014}{3} + \dots + \dfrac{1}{2016} \above 1pt \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2017} } \\\\ &=& \dfrac{\dfrac{2017-1}{1} + \dfrac{2017-2}{2} + \dfrac{2017-3}{3} + \dots + \dfrac{2017-2016}{2016}} {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{1} + \dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}-2016\cdot 1} {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}+2017-2016 } {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}+1 } {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+\dfrac{1}{2017} \right)\times \dfrac{2017}{2017} } \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+\dfrac{2017}{2017} \right)\times \dfrac{1}{2017} } \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+1 \right)\times \dfrac{1}{2017} } \\\\ &=& \dfrac{\left(\dfrac{2017}{2} + \dfrac{2017}{3}+ \dfrac{2017}{4} + \dots + \dfrac{2017}{2016} +1\right) } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+1 \right) } \times 2017 \\\\ &=& \mathbf{2017} \\ \hline \end{array}\)

 

laugh

30 авг. 2019 г.
 #3
avatar+26398 
+2
29 авг. 2019 г.