heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+3

Let \(\mathbf{ f(x) = (x^2 + 6x + 9)^{50} - 4x + 3 }\)
and let \(\mathbf{ r_{1}, r_{2}, \ldots , r_{100} }\) be the roots of \(\mathbf{f(x)}\)
Compute \(\mathbf{(r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} }\).

 

\(\begin{array}{|rcll|} \hline \mathbf{ f(x) } &=& \mathbf{(x^2 + 6x + 9)^{50} - 4x + 3} \quad | \quad x^2 + 6x + 9 = \left(x+3\right)^2 \\\\ f(x) &=& \Big(\left(x+3\right)^2\Big)^{50} - 4x + 3 \\ f(x) &=& (x+3)^{2\cdot 50} - 4x + 3 \\ f(x) &=& (x+3)^{100} - 4x + 3 \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline f(r_1) = 0: & \left(r_1+3\right)^{100} -4r_1 + 3 &=& 0 \\ & \left(r_1+3\right)^{100} &=& \mathbf{4r_1 - 3} \\\\ f(r_2) = 0: & \left(r_2+3\right)^{100} -4r_2 + 3 &=& 0 \\ & \left(r_2+3\right)^{100} &=& \mathbf{4r_2 - 3} \\ \\ f(r_3) = 0: & \left(r_3+3\right)^{100} -4r_3 + 3 &=& 0 \\ & \left(r_3+3\right)^{100} &=& \mathbf{4r_3 - 3} \\ \ldots & \ldots \\ f(r_{100}) = 0: & \left(r_{100}+3\right)^{100} -4r_{100} + 3 &=& 0 \\ & \left(r_{100}+3\right)^{100} &=& \mathbf{4r_{100} - 3} \\ \\ & (r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} &=& \mathbf{4\cdot ( r_1+r_2+\ldots +r_{100} ) -3 \cdot 100} \\ \hline \end{array}\)

 

Vieta theorem:

\(\begin{array}{|lrcll|} \hline & \mathbf{0} &=& \mathbf{x^n+a_{n-1}x^{n-1}+\ldots+a_2x^2+a_1x^1+a_0} \\\\ & a_{n-1} &=& -\sum \limits_{k=1}^{n}r_k \\ & a_{n-1} &=& -(r_1+r_2+\ldots + r_n ) \\ \hline n = 100: & \mathbf{0} &=& \mathbf{x^{100}+a_{99}x^{99}+\ldots+a_2x^2+a_1x^1+a_0} \\\\ & \mathbf{a_{99}} &=& \mathbf{-(r_1+r_2+\ldots + r_{100} )} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (x+3)^{100} - 4x + 3 &=& 0 \\ \Big( \binom{100}{0}x^{100} + \binom{100}{1}x^{99}\cdot 3^1 + \ldots + \binom{100}{100} 3^{100} \Big) - 4x + 3 &=& 0 \\ \Big( x^{100} + \underbrace{300}_{=a_{99}}x^{99} + \ldots + 3^{100} \Big) - 4x + 3 &=& 0 \\\\ \mathbf{a_{99}} &=& \mathbf{300} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{a_{99}} &=& \mathbf{-(r_1+r_2+\ldots + r_{100} )} \quad | \quad a_{99} = 300 \\\\ 300 &=& -(r_1+r_2+\ldots + r_{100} )\\ \mathbf{r_1+r_2+\ldots + r_{100}} &=& \mathbf{-300} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{(r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} } &=& \mathbf{4\cdot ( r_1+r_2+\ldots +r_{100} ) -3 \cdot 100} \\\\ (r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} &=& 4\cdot ( -300 ) -3 \cdot 100 \\ (r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} &=& -1200 - 300 \\ \mathbf{(r_{1} + 3)^{100} + (r_{2} + 3)^{100} + \ldots + (r_{100} + 3)^{100} } &=& \mathbf{-1500 } \\ \hline \end{array}\)

 

Edited, thank you Rom !

 

laugh

27 авг. 2019 г.
 #5
avatar+26398 
+3
25 авг. 2019 г.
 #3
avatar+26398 
+2

Find the equation of the asymptote of the graph of  \(r = \cos ( 2\theta) \sec( \theta)\).

 

I assume the function is a polar function:
https://www.wolframalpha.com/input/?i=polar+plot+r%3Dcos%282x%29sec%28x%29

 

The asymptote of the graph is \(\mathbf{x = -1}\).

source: https://www.youtube.com/watch?v=7Ae3VHPyMMQ

 

\(\begin{array}{|rcll|} \hline \mathbf{r} &=& \mathbf{\cos (2\theta) \sec( \theta)} \\\\ r &=& \dfrac{\cos (2\theta)} {\cos( \theta)} \quad | \quad \theta=\dfrac{\pi}{2} \Rightarrow r\to \infty \\\\ && \text{Set $\alpha = \dfrac{\pi}{2}$ } \\\\ \dfrac{dr}{d\theta } &=& \dfrac{-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } {\cos^2(\theta)} \\\\ \dfrac{d\theta }{dr} &=& \dfrac{\cos^2(\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} r^2\dfrac{d\theta}{dr}\\ \\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\theta)} {\cos^2( \theta)} \left(\dfrac{\cos^2(\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) }\right) \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\dfrac{\pi}{2})} {-2\sin(2\dfrac{\pi}{2})\cos(\dfrac{\pi}{2})+\cos(2\dfrac{\pi}{2})\sin(\dfrac{\pi}{2}) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(\pi)} {-2\sin(\pi)\cos(\dfrac{\pi}{2})+\cos(\pi)\sin(\dfrac{\pi}{2}) } \\\\ p &=& \dfrac{(-1)^2} {-2\cdot 0\cdot 0+(-1)(1)} \\\\ p &=& \dfrac{1} {-1} \\\\ \mathbf{p} &=& \mathbf{-1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{p} &=& \mathbf{r \sin(\alpha-\theta)} \quad | \quad r=-1,\ \alpha = \dfrac{\pi}{2} \\\\ -1 &=& r \sin(\dfrac{\pi}{2} -\theta) \\\\ -1 &=& r \cos( \theta) \\\\ \mathbf{r} &=&\mathbf{ -\dfrac{1}{\cos( \theta)} \quad | \quad \text{the asymptote of the graph }} \\ \hline \end{array}\)

 

polar plot asymptote see: https://www.wolframalpha.com/input/?i=polar+plot+r%3D+-1%2Fcos%28x%29

 

Asymptote in Cartesian Coordinates:
To convert from Polar Coordinates (r,\(\theta\)) to Cartesian Coordinates (x,y) :
\(x = r \times \cos(\theta) \\ y = r \times \sin(\theta)\)

 

\(\begin{array}{|rcll|} \hline \mathbf{r} &=&\mathbf{ -\dfrac{1}{\cos( \theta)} } \quad | \quad \cos{\theta}=\dfrac{x}{r} \\\\ r &=& -\dfrac{1}{ \dfrac{x}{r} } \\ r &=& -\dfrac{r}{ x } \\ xr &=& -r \quad | \quad :r \\\\ \mathbf{x} &=& \mathbf{-1 } \\ && \mathbf{\text{the asymptote of the graph in Cartesian Coordinates}} \\ \hline \end{array}\)


hint: The function \(r = \cos ( 2\theta) \sec( \theta)\) in cartesian coordinates: \((x^2+y^2) (1+x) = 2x^2 \quad | \quad r^2 = x^2+y^2,\ x = r \times \cos(\theta) ,\ y = r \times \sin(\theta) \)

 

laugh

25 авг. 2019 г.
 #2
avatar+26398 
+2

Find the equation of the asymptote of the graph of  \(r = \cos 2 \theta \sec \theta\).

I assume the function is a polar function:

 

polar plot see: https://www.wolframalpha.com/input/?i=polar+plot+r%3Dcos%282x%29sec%28x%29

 

The asymptote of the graph is \(\mathbf{x = -1}\).

 

Source: https://www.youtube.com/watch?v=7Ae3VHPyMMQ

 

\(\begin{array}{|rcll|} \hline \mathbf{r} &=& \mathbf{\cos (2\theta) \sec( \theta)} \\\\ r &=& \dfrac{\cos (2\theta)} {\cos( \theta)} \quad | \quad \theta=\dfrac{\pi}{2} \Rightarrow r\to \infty \\\\ && \text{Set $\alpha = \dfrac{\pi}{2}$ } \\\\ \dfrac{dr}{d\theta } &=& \dfrac{-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } {\cos^2(\theta)} \\\\ \dfrac{d\theta }{dr} &=& \dfrac{\cos^2(\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} r^2\dfrac{d\theta}{dr}\\ \\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\theta)} {\cos^2( \theta)} \left(\dfrac{\cos^2(\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) }\right) \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\theta)} {-2\sin(2\theta)\cos(\theta)+\cos(2\theta)\sin(\theta) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(2\dfrac{\pi}{2})} {-2\sin(2\dfrac{\pi}{2})\cos(\dfrac{\pi}{2})+\cos(2\dfrac{\pi}{2})\sin(\dfrac{\pi}{2}) } \\\\ p &=& \lim \limits_{\theta\to \dfrac{\pi}{2}} \dfrac{\cos^2(\pi)} {-2\sin(\pi)\cos(\dfrac{\pi}{2})+\cos(\pi)\sin(\dfrac{\pi}{2}) } \\\\ p &=& \dfrac{(-1)^2} {-2\cdot 0\cdot 0+(-1)(1)} \\\\ p &=& \dfrac{1} {-1} \\\\ \mathbf{p} &=& \mathbf{-1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{p} &=& \mathbf{r \sin(\alpha-\theta)} \quad | \quad r=-1,\ \alpha = \dfrac{\pi}{2} \\\\ -1 &=& r \sin(\dfrac{\pi}{2} -\theta) \\\\ -1 &=& r \cos( \theta) \\\\ \mathbf{r} &=&\mathbf{ -\dfrac{1}{\cos( \theta)} \quad | \quad \text{the asymptote of the graph }} \\ \hline \end{array}\)

 

polar plot asymtote see: https://www.wolframalpha.com/input/?i=polar+plot+r%3D+-1%2Fcos%28x%29

 

Asymptote in Cartesian Coordinates:

To convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) :
\(x = r \times \cos( \theta ) \\ y = r \times \sin( \theta )\)

 

\(\begin{array}{|rcll|} \hline \mathbf{r} &=&\mathbf{ -\dfrac{1}{\cos( \theta)} } \quad | \quad \cos{\theta}=\dfrac{x}{r} \\\\ r &=& -\dfrac{1}{ \dfrac{x}{r} } \\ r &=& -\dfrac{r}{ x } \\ xr &=& -r \quad | \quad :r \\\\ \mathbf{x} &=& \mathbf{-1 } \\ && \mathbf{\text{the asymptote of the graph in Cartesian Coordinates}} \\ \hline \end{array}\)

 

laugh

25 авг. 2019 г.
 #3
avatar+26398 
+2
23 авг. 2019 г.