heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

​geometry proof

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In ACP sin-rule:}} \\ \hline \frac{w}{\sin(90^\circ-\alpha)} &=& \frac{CP}{\sin(45^\circ)} \quad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In CPQ sin-rule:}} \\ \hline \frac{\sin(45^\circ)}{v} &=& \frac{\sin(\alpha)}{CP} \quad (2) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (1)\times(2): & \frac{w}{\sin(90^\circ-\alpha)}\times \frac{\sin(45^\circ)}{v} &=&\frac{CP}{\sin(45^\circ)} \times \frac{\sin(\alpha)}{CP} \\\\ & \frac{w}{\cos(\alpha)}\times \frac{\sin(45^\circ)}{v} &=&\frac{\sin(\alpha)}{\sin(45^\circ)} \\\\ & \frac{w}{v} &=& \frac{\sin(\alpha)\sin(\alpha)} {\sin^2(45^\circ)} \\\\ & \frac{w}{v} &=& \frac{2\sin(\alpha)\sin(\alpha)} {2\sin^2(45^\circ)} \\ & && \boxed{\sin(45^\circ) = \frac{\sqrt{2}}{2} \\ \sin^2(45^\circ) = \frac{1}{2} }\\ & \frac{w}{v} &=& \frac{2\sin(\alpha)\sin(\alpha)} {2*\frac{1}{2}} \\ & \frac{w}{v} &=& 2\sin(\alpha)\sin(\alpha) \\ & && \boxed{ 2\sin(\alpha)\sin(\alpha)= \sin(2\alpha) }\\ & \mathbf{\frac{w}{v}} &=& \mathbf{\sin(2\alpha)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In BCQ sin-rule:}} \\ \hline \frac{u}{\sin(\alpha-45^\circ)} &=& \frac{CQ}{\sin(45^\circ)} \quad (3) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In CPQ sin-rule:}} \\ \hline \frac{\sin(45^\circ)}{v} &=& \frac{\sin(135^\circ-\alpha)}{CQ} \quad (4) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (3)\times(4): & \frac{u}{\sin(\alpha-45^\circ)}\times \frac{\sin(45^\circ)}{v} &=&\frac{CQ}{\sin(45^\circ)} \times \frac{\sin(135^\circ-\alpha)}{CQ} \\\\ & \frac{u}{\sin(\alpha-45^\circ)}\times \frac{\sin(45^\circ)}{v} &=&\frac{\sin(135^\circ-\alpha)}{\sin(45^\circ)} \\\\ & \frac{u}{v} &=& \frac{\sin(\alpha-45^\circ)\sin(135^\circ-\alpha)} {\sin^2(45^\circ)} \\ & && \boxed{\sin(45^\circ) = \frac{\sqrt{2}}{2} \\ \sin^2(45^\circ) = \frac{1}{2} }\\ & \frac{u}{v} &=& \frac{\sin(\alpha-45^\circ)\sin(135^\circ-\alpha)} {\frac{1}{2}} \\\\ & \frac{u}{v} &=& 2\sin(\alpha-45^\circ)\sin(135^\circ-\alpha) \\ & && \boxed{\sin(135^\circ-\alpha) = \sin \Big(180^\circ-(135^\circ-\alpha) \Big)\\ = \sin(\alpha+45^\circ) }\\ & \frac{u}{v} &=& 2\sin(\alpha-45^\circ)\sin(\alpha+45^\circ) \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline && \mathbf{ \sin(\alpha-45^\circ)\sin(\alpha+45^\circ) } \\ &=&\Big(\sin(\alpha)\cos(45^\circ)-\cos(\alpha)\sin(45^\circ)\Big) \Big(\sin(\alpha)\cos(45^\circ)+\cos(\alpha)\sin(45^\circ)\Big) \\ && \boxed{ \cos(45^\circ)=\sin(45^\circ)=\frac{\sqrt{2}}{2} } \\ &=&\frac{\sqrt{2}}{2}\Big(\sin(\alpha)-\cos(\alpha)\Big) \frac{\sqrt{2}}{2}\Big(\sin(\alpha)+\cos(\alpha)\Big) \\ &=&\frac{1}{2}\Big(\sin(\alpha)-\cos(\alpha)\Big)\Big(\sin(\alpha)+\cos(\alpha)\Big) \\ &=&\frac{1}{2}\Big(\sin^2(\alpha)-\cos^2(\alpha)\Big) \\ &=&-\frac{1}{2}\Big(\cos^2(\alpha)-\sin^2(\alpha)\Big) \\ && \boxed{ \cos^2(\alpha)-\sin^2(\alpha)= \cos(2\alpha)} \\ &=&\mathbf{-\frac{1}{2}\cos(2\alpha)} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \frac{u}{v} &=& 2\sin(\alpha-45^\circ)\sin(\alpha+45^\circ) \\ \frac{u}{v} &=& 2\left(-\frac{1}{2}\cos(2\alpha)\right) \\ \mathbf{\frac{u}{v}} &=& \mathbf{-\cos(2\alpha)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\frac{w}{v}} = \mathbf{\sin(2\alpha)} &\qquad & \mathbf{\frac{u}{v}} = \mathbf{-\cos(2\alpha)} \\\\ \left( \frac{w}{v} \right)^2 + \left( \frac{u}{v} \right)^2 &=& \Big( \sin(2\alpha)\Big)^2 + \Big(-\cos(2\alpha)\Big)^2 \\ \left( \frac{w}{v} \right)^2 + \left( \frac{u}{v} \right)^2 &=& \sin^2(2\alpha) + \cos^2(2\alpha) \\ \frac{w^2}{v^2} + \frac{u^2}{v^2} &=& 1 \quad | \quad \times v^2 \\ \mathbf{w^2 + u^2} &=& \mathbf{v^2} \\ \hline \end{array}\)

 

laugh

14 февр. 2020 г.
 #3
avatar+26398 
+3
14 февр. 2020 г.
 #1
avatar+26398 
+3

The trapezoid is divided into 5 parts horizontally with AB and CD are equally divided.
The Trapezoid also divided into 5 parts vertically with AD and BC are devided equally.
If the shaded regions K has area 35 and the shaded region L has area 55.
Determine the area of the trapezoid ABCD.

 

\(\begin{array}{|rcll|} \hline 5b+2*\frac{1}{5}x = 5a &\text{ or }& \boxed{b = a-\frac{2}{25}x} \\ 5c+2*\frac{2}{5}x = 5a &\text{ or }& \boxed{c = a-\frac{4}{25}x} \\ 5d+2*\frac{3}{5}x = 5a &\text{ or }& \boxed{d = a-\frac{6}{25}x} \\ 5e+2*\frac{4}{5}x = 5a &\text{ or }& \boxed{e = a-\frac{8}{25}x} \\ 5f+2x = 5a &\text{ or }& \boxed{f = a-\frac{2}{5}x} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{trapezoid } ABCD &=& \left(\dfrac{5a+5f}{2}\right)5h \quad | \quad \boxed{f = a-\frac{2}{5}x} \\ &=& \left(\dfrac{5a+5(a-\frac{2}{5}x)}{2}\right)5h \\ &=& \left(\dfrac{10a-2x}{2}\right)5h \\ &=& (5a-x)5h \\ \mathbf{\text{trapezoid } ABCD} &=& \mathbf{25ah-5xh} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{K:} \\ \hline 35 &=& \left(\frac{d+e}{2}\right)h + 2 \left( \frac{e+f}{2}\right)h \\ 35 &=& \left(\frac{d+e}{2}\right)h + ( e+f )h \\ 35 &=& \left(\frac{a-\frac{6}{25}x+a-\frac{8}{25}x}{2}\right)h + ( a-\frac{8}{25}x+a-\frac{2}{5}x )h \\ \ldots \\ \mathbf{35} &=& \mathbf{3ah-xh} \quad (1) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{L:} \\ \hline 55 &=& 2 \left( \frac{a+b}{2}\right)h + \left(\frac{b+c}{2}\right)h \\ 55 &=& ( a+b )h + \left(\frac{b+c}{2}\right)h \\ 55 &=& ( a+a-\frac{2}{25}x )h + \left( \frac{ a-\frac{2}{25}x + a-\frac{4}{25}x }{2} \right)h \\ \ldots \\ \mathbf{55} &=& \mathbf{3ah-\frac{5}{25}xh} \quad (2) \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (2)-(1): & 3ah-\frac{5}{25}xh -(3ah-xh) &=& 55-35 \\ & 3ah-\frac{5}{25}xh -3ah+ xh &=& 20 \\ & -\frac{5}{25}xh + xh &=& 20 \\ & \frac{20}{25}xh &=& 20 \\ & \frac{xh}{25} &=& 1 \\ & \mathbf{xh} &=& \mathbf{25} \\\\ (1): & 3ah &=& 35+xh \\ & 3ah &=& 35+25 \\ & 3ah &=& 60 \\ & \mathbf{ah} &=& \mathbf{20} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{trapezoid } ABCD} &=& \mathbf{25ah-5xh} \\ &=& 25*20-5*25 \\ &=& 500-125 \\ \mathbf{\text{trapezoid } ABCD} &=& \mathbf{375} \\ \hline \end{array} \)

 

laugh

13 февр. 2020 г.
 #8
avatar+26398 
+2
13 февр. 2020 г.
 #6
avatar+26398 
+2
12 февр. 2020 г.
 #2
avatar+26398 
+2

Solve for x.

\(\begin{array}{|rcll|} \hline \mathbf{\text{cos-rule:}} \\ \hline \mathbf{z^2} &=& \mathbf{10^2+12^2-2*10*12*\cos(60^\circ)} \quad | \quad \cos(60^\circ) = \dfrac{1}{2} \\ z^2 &=& 100+144-240*\dfrac{1}{2} \\\\ z^2 &=& 124 \\\\ z^2 &=& 4*31 \\\\ \mathbf{z} &=& \mathbf{2\sqrt{31}} \qquad (1) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{sin-rule:}} \\ \hline \mathbf{\dfrac{\sin(\alpha)}{10}} &=& \mathbf{\dfrac{\sin(60^\circ)}{z}} \\\\ \sin(\alpha) &=& \dfrac{10\sin(60^\circ)}{z} \quad | \quad \sin(60^\circ) = \dfrac{\sqrt{3}}{2} \\\\ \sin(\alpha) &=& \dfrac{10\sqrt{3}}{2z} \\\\ \sin(\alpha) &=& \dfrac{5\sqrt{3}}{z} \quad | \quad z=2\sqrt{31} \\\\ \sin(\alpha) &=& \dfrac{5\sqrt{3}}{2\sqrt{31}} \\\\ \sin(\alpha) &=& \dfrac{5}{62}\sqrt{93} \\\\ \sin(\alpha) &=& 0.77771377105 \\\\ \alpha &=& \arcsin\left(0.77771377105\right) \\\\ \mathbf{\alpha} &=& \mathbf{51.0517244354^\circ} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{sin-rule:}} \\ \hline \mathbf{\dfrac{\sin(\alpha)}{10}} &=& \mathbf{ \dfrac{\sin(\beta)}{12}} \\\\ \sin(\beta) &=& \dfrac{12}{10}\sin(\alpha) \\\\ \sin(\beta) &=& \dfrac{6}{5}\sin(\alpha) \\\\ \sin(\beta) &=& \dfrac{6}{5}*0.77771377105 \\\\ \sin(\beta) &=& 0.93325652526 \\\\ \beta &=& \arcsin\left(0.93325652526\right) \\\\ \mathbf{\beta} &=& \mathbf{68.9482755646^\circ} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{sin-rule:}} \\ \hline \mathbf{\dfrac{\sin(30^\circ+\alpha)}{x}} &=& \mathbf{ \dfrac{\sin(\beta)}{12}} \\\\ x &=& \dfrac{12\sin(30^\circ+\alpha)^\circ)}{\sin(\beta)} \\\\ x &=& \dfrac{12\sin(30^\circ+51.0517244354^\circ)}{0.93325652526} \\\\ x &=& \dfrac{12\sin(81.0517244354)}{0.93325652526} \\\\ x &=& \dfrac{12*0.98782916115}{0.93325652526} \\\\ x &=& \dfrac{11.8539499338}{0.93325652526} \\\\ \mathbf{x} &=& \mathbf{12.7017059222} \\ \hline \end{array} \)

 

laugh

12 февр. 2020 г.
 #3
avatar+26398 
+1
12 февр. 2020 г.
 #1
avatar+26398 
+2
12 февр. 2020 г.