1) Find
\(\dfrac{1}{4} + \dfrac{1}{4^2} + \dfrac{1}{4^3} + \dotsb\) .
Geometric progression: \( a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots\)
\(\begin{array}{|rcll|} \hline \mathbf{\text{Geometric progression: } a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots,\qquad a=\dfrac{1}{4},\ r=\dfrac{1}{4} } \\ \hline \dfrac{1}{4},\ \dfrac{1}{4}*\left(\dfrac{1}{4}\right)^1,\ \dfrac{1}{4}\left(\dfrac{1}{4}\right)^2,\ \dfrac{1}{4}\left(\dfrac{1}{4}\right)^3,\ \dfrac{1}{4}\left(\dfrac{1}{4}\right)^4,\ \ldots \\ \hline \end{array}\)
Infinite geometric series, the sum formula: \(\dfrac{a}{1-r}\)
\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{a}{1-r}} &=& \dfrac{\frac{1}{4}}{1-\frac{1}{4}} \quad |\quad a=\dfrac{1}{4},\ r=\dfrac{1}{4} \\\\ &=& \dfrac{4}{4*3} \\\\ &=& \mathbf{\dfrac{1}{3}} \\ \hline \end{array}\)
\(\mathbf{\dfrac{1}{4} + \dfrac{1}{4^2} + \dfrac{1}{4^3} + \dotsb} = \mathbf{\dfrac{1}{3}}\)
