heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+4

Square ABCD has area 12.25.
E is the intersection of BD and the semicircle of diameter AD.
CF is a segment drawn from C and tangnet to the semicircle at F.
Find the area of triangle DEF.

 

 

 

 

\(\begin{array}{|lll|} \hline\mathbf{Point }~E: \text{ Intersection circle and line }BD \\ \hline \begin{array}{rcll} \mathbf{y_E} &=& \mathbf{-x_E+2r} \\ \mathbf{y_E^2} &=& \mathbf{2rx_E-x_E^2} \\ (-x_E+2r)^2 &=& 2rx_E-x_E^2 \\ x_E^2 - 4rx_E+4r^2 &=& 2rx_E-x_E^2 \\ 2x_E^2-6rx_E+4r^2 &=& 0 \quad | \quad :2 \\ \mathbf{x_E^2-3rx_E+2r^2} &=& \mathbf{0} \\\\ x_E^2 &=& \dfrac{3r\pm \sqrt{9r^2-4*(2r^2)} }{2} \\ x_E^2 &=& \dfrac{3r\pm \sqrt{r^2} }{2} \\ x_E^2 &=& \dfrac{3r\pm r} {2} \\\\ x_E &=& \dfrac{3r-r}{2} \\ x_E &=& \dfrac{2r}{2} \\ \mathbf{x_E} &=& \mathbf{r}\ \checkmark \\\\ x_E &=& \dfrac{3r+r}{2} \\ x_E &=& \dfrac{4r}{2} \\ \mathbf{x_E} &=& \mathbf{2r} \quad | \quad \text{Pont }E ~\neq~ \text{Pont }D \\\\ y_E &=& -x_E+2r \quad | \quad x_E= r\\ y_E &=& -r+2r \\ \mathbf{y_E} &=& \mathbf{r}\ \checkmark \\\\ \mathbf{E} &=& \mathbf{(r,r)} \\ \end{array}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{MH}: \\ \hline r^2 &=& MH*CM \quad | \quad CM=r\sqrt{5} \\ r^2 &=& MH*r\sqrt{5} \\ r &=& MH\sqrt{5} \\ \mathbf{MH} &=& \mathbf{\dfrac{r}{\sqrt{5}} } \\ \hline \end{array}\\ \begin{array}{|rcll|} \hline \mathbf{FH}: \\ \hline FH^2 &=& MH*(CM-MH) \\ && \boxed{MH=\dfrac{r}{\sqrt{5}},\ CM=r\sqrt{5}} \\ FH^2 &=& \dfrac{r}{\sqrt{5}}*\left(r\sqrt{5}-\dfrac{r}{\sqrt{5}}\right) \\\\ FH^2 &=& r^2-\dfrac{r^2}{5} \\\\ FH^2 &=& \dfrac{4r^2}{5} \\\\ \mathbf{FH} &=& \mathbf{\dfrac{2r}{\sqrt{5}}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x_F}: \\ \hline FD^2 &=& (AD-x_F)*AD \quad | \quad FD=2FH,\ AD=2r \\ (2FH)^2 &=& (2r-x_F)*2r \quad | \quad FH =\dfrac{2r}{\sqrt{5}} \\ \left(\dfrac{4r}{\sqrt{5}}\right)^2 &=& (2r-x_F)*2r \\ \dfrac{16r^2}{5} &=& 4r^2-2rx_F \\ 2rx_F &=& 4r^2 - \dfrac{16r^2}{5} \quad | \quad :2r \\ x_F &=& 2r - \dfrac{8r}{5} \\ \mathbf{x_F} &=& \mathbf{\dfrac{2r}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{y_F}: \\ \hline y_F^2 &=& x_F(AD-x_F) \quad | \quad x_F=\dfrac{2r}{5},\ AD=2r \\\\ y_F^2 &=& \dfrac{2r}{5}(2r-\dfrac{2r}{5}) \\\\ y_F^2 &=& \dfrac{4r^2}{5} - \dfrac{4r^2}{25} \\\\ y_F^2 &=& \dfrac{20r^2}{5} - \dfrac{4r^2}{25} \\\\ y_F^2 &=& \dfrac{16r^2}{25} \\\\ \mathbf{y_F} &=& \mathbf{\dfrac{4r}{5}} \\ \hline \end{array}\)

 

\(\mathbf{F} = \mathbf{(\dfrac{2r}{5},\dfrac{4r}{5})} \)

 

\(\begin{array}{|lll|} \hline \mathbf{\text{The area of triangle }~DEF}: \\ \begin{array}{lccc} \hline \text{Point} & x & y & \text{cross product} \\ \hline D: & 2r & 0 \\ E: & r & r & 2r*r-r*0 \\ F: & \dfrac{2r}{5} & \dfrac{4r}{5} & r *\dfrac{4r}{5} - \dfrac{2r}{5} * r \\ D: & 2r & 0 & \dfrac{2r}{5} * 0 - 2r * \dfrac{4r}{5} \\ \hline & & & \text{sum }~=2r^2 + \dfrac{4r^2}{5} - \dfrac{2r^2}{5} - \dfrac{8r^2}{5} \\ & & & =2r^2\left(1 + \dfrac{2}{5} - \dfrac{1}{5} - \dfrac{4r}{5}\right) \\ & & & =2r^2\left(1 + \dfrac{2}{5} - 1\right) \\ & & & =2r^2\left( \dfrac{2}{5}\right) \\ & & & =\dfrac{4r^2}{5} \\ \hline \end{array}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{The area of triangle }~DEF &=& \dfrac{\text{sum}}{2} \\\\ &=& \dfrac{\dfrac{4r^2}{5}}{2} \\\\ &=& \dfrac{2r^2}{5} \\\\ && \text{Square }~ ABCD &= AB*AD \quad | \quad AB=AD=2r \\ && \text{Square }~ ABCD &= (2r)^2 \\ && \text{Square }~ ABCD &= 4r^2 \quad | \quad \text{Square }~ ABCD= 12.25 \\ && 12.25 &= 4r^2 \quad | \quad :4 \\ && 3.0625 &= r^2 \\ && \mathbf{r^2} &= \mathbf{3.0625} \\\\ &=& \dfrac{2*3.0625}{5} \\\\ \mathbf{\text{The area of triangle }~DEF} &=& \mathbf{1.225} \\ \hline \end{array}\)

 

source:
https://en.wikipedia.org/wiki/Geometric_mean_theorem

https://www.youtube.com/watch?v=AByG1nTvA_Q

 

laugh

20 февр. 2020 г.
 #1
avatar+26398 
+4

Square ABCD has area 12.25.

E is the intersection of BD and the semicircle of diameter AD.

CF is a segment drawn from C and tangnet to the semicircle at F.

Find the area of triangle DEF.

 

\(\begin{array}{|lll|} \hline\mathbf{Point }~E: \text{ Intersection circle and line }BD \\ \hline \begin{array}{rcll} \mathbf{y_E} &=& \mathbf{-x_E+2r} \\ \mathbf{y_E^2} &=& \mathbf{2rx_E-x_E^2} \\ (-x_E+2r)^2 &=& 2rx_E-x_E^2 \\ x_E^2 - 4rx_E+4r^2 &=& 2rx_E-x_E^2 \\ 2x_E^2-6rx_E+4r^2 &=& 0 \quad | \quad :2 \\ \mathbf{x_E^2-3rx_E+2r^2} &=& \mathbf{0} \\\\ x_E^2 &=& \dfrac{3r\pm \sqrt{9r^2-4*(2r^2)} }{2} \\ x_E^2 &=& \dfrac{3r\pm \sqrt{r^2} }{2} \\ x_E^2 &=& \dfrac{3r\pm r} {2} \\\\ x_E &=& \dfrac{3r-r}{2} \\ x_E &=& \dfrac{2r}{2} \\ \mathbf{x_E} &=& \mathbf{r}\ \checkmark \\\\ x_E &=& \dfrac{3r+r}{2} \\ x_E &=& \dfrac{4r}{2} \\ \mathbf{x_E} &=& \mathbf{2r} \quad | \quad \text{Pont }E ~\neq~ \text{Pont }D \\\\ y_E &=& -x_E+2r \quad | \quad x_E= r\\ y_E &=& -r+2r \\ \mathbf{y_E} &=& \mathbf{r}\ \checkmark \\\\ \mathbf{E} &=& \mathbf{(r,r)} \\ \end{array}\\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{MH}: \\ \hline r^2 &=& MH*CM \quad | \quad CM=r\sqrt{5} \\ r^2 &=& MH*r\sqrt{5} \\ r &=& MH\sqrt{5} \\ \mathbf{MH} &=& \mathbf{\dfrac{r}{\sqrt{5}} } \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{FH}: \\ \hline FH^2 &=& MH*(CM-MH) \\ && \boxed{MH=\dfrac{r}{\sqrt{5}},\ CM=r\sqrt{5}} \\ FH^2 &=& \dfrac{r}{\sqrt{5}}*\left(r\sqrt{5}-\dfrac{r}{\sqrt{5}}\right) \\\\ FH^2 &=& r^2-\dfrac{r^2}{5} \\\\ FH^2 &=& \dfrac{4r^2}{5} \\\\ \mathbf{FH} &=& \mathbf{\dfrac{2r}{\sqrt{5}}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x_F}: \\ \hline FD^2 &=& (AD-x_F)*AD \quad | \quad FD=2FH,\ AD=2r \\ (2FH)^2 &=& (2r-x_F)*2r \quad | \quad FH =\dfrac{2r}{\sqrt{5}} \\ \left(\dfrac{4r}{\sqrt{5}}\right)^2 &=& (2r-x_F)*2r \\ \dfrac{16r^2}{5} &=& 4r^2-2rx_F \\ 2rx_F &=& 4r^2 - \dfrac{16r^2}{5} \quad | \quad :2r \\ x_F &=& 2r - \dfrac{8r}{5} \\ \mathbf{x_F} &=& \mathbf{\dfrac{2r}{5}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{y_F}: \\ \hline y_F^2 &=& x_F(AD-x_F) \quad | \quad x_F=\dfrac{2r}{5},\ AD=2r \\\\ y_F^2 &=& \dfrac{2r}{5}(2r-\dfrac{2r}{5}) \\\\ y_F^2 &=& \dfrac{4r^2}{5} - \dfrac{4r^2}{25} \\\\ y_F^2 &=& \dfrac{20r^2}{5} - \dfrac{4r^2}{25} \\\\ y_F^2 &=& \dfrac{16r^2}{25} \\\\ \mathbf{y_F} &=& \mathbf{\dfrac{4r}{5}} \\ \hline \end{array}\)

 

\(\mathbf{F} = \mathbf{(\dfrac{2r}{5},\dfrac{4r}{5})} \)

 

\(\begin{array}{|lll|} \hline \mathbf{\text{The area of triangle }~DEF}: \\ \begin{array}{lccc} \hline \text{Point} & x & y & \text{cross product} \\ \hline D: & 2r & 0 \\ E: & r & r & 2r*r-r*0 \\ F: & \dfrac{2r}{5} & \dfrac{4r}{5} & r *\dfrac{4r}{5} - \dfrac{2r}{5} * r \\ D: & 2r & 0 & \dfrac{2r}{5} * 0 - 2r * \dfrac{4r}{5} \\ \hline & & & \text{sum }~=2r^2 + \dfrac{4r^2}{5} - \dfrac{2r^2}{5} - \dfrac{8r^2}{5} \\ & & & =2r^2\left(1 + \dfrac{2}{5} - \dfrac{1}{5} - \dfrac{4r}{5}\right) \\ & & & =2r^2\left(1 + \dfrac{2}{5} - 1\right) \\ & & & =2r^2\left( \dfrac{2}{5}\right) \\ & & & =\dfrac{4r^2}{5} \\ \hline \end{array}\\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \text{The area of triangle }~DEF &=& \dfrac{\text{sum}}{2} \\\\ &=& \dfrac{\dfrac{4r^2}{5}}{2} \\\\ &=& \dfrac{2r^2}{5} \\\\ && \text{Square }~ ABCD &= AB*AD \quad | \quad AB=AD=2r \\ && \text{Square }~ ABCD &= (2r)^2 \\ && \text{Square }~ ABCD &= 4r^2 \quad | \quad \text{Square }~ ABCD= 12.25 \\ && 12.25 &= 4r^2 \quad | \quad :4 \\ && 3.0625 &= r^2 \\ && \mathbf{r^2} &= \mathbf{3.0625} \\\\ &=& \dfrac{2*3.0625}{5} \\\\ \mathbf{\text{The area of triangle }~DEF} &=& \mathbf{1.225} \\ \hline \end{array}\)

 

Source: https://en.wikipedia.org/wiki/Geometric_mean_theorem

https://www.youtube.com/watch?v=AByG1nTvA_Q

 

laugh

20 февр. 2020 г.
 #3
avatar+26398 
+1

In a geometric progression of real numbers, the sum of the first two terms is 7,

and the sum of the first six term is 91. 

Find the sum of the first four terms.

 

\(\begin{array}{|rclrcl|} \hline \mathbf{s_4 = a \dfrac{1-r^4}{1-r}} && \mathbf{s_2 = a \dfrac{1-r^2}{1-r}} \\ \hline \\ \dfrac{s_4}{s_2} &=& a \dfrac{1-r^4}{1-r} \above 1pt a \dfrac{1-r^2}{1-r} \\\\ \dfrac{s_4}{s_2} &=& \dfrac{(1-r^4)}{1-r^2} \\\\ \dfrac{s_4}{s_2} &=& \dfrac{(1-r^2)(1+r^2)}{1-r^2} \\\\ \dfrac{s_4}{s_2} &=& 1+r^2 \\\\ s_4 &=& s_2(1+r^2) \quad | \quad s_2 = 7 \\\\ \mathbf{s_4} &=& \mathbf{7(1+r^2)} \qquad (1) \\ \hline \end{array} \begin{array}{|rclrcl|} \hline \mathbf{s_2} &=& \mathbf{a+ ar} \\\\ s_2 &=& a(1+r) \quad | \quad s_2 = 7 \\\\ 7 &=& a(1+r) \\\\ \mathbf{a} &=& \mathbf{\dfrac{7}{1+r} } \qquad (2) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline s_6 &=& S_2 + ar^2+ar^3+ar^4+ar^5 \quad | \quad s_2 = 7, s_6 = 91 \\ 91 &=& 7 + ar^2+ar^3+ar^4+ar^5 \\ 84 &=& ar^2+ar^3+ar^4+ar^5 \\ 84 &=& ar^2 (1 +r+r^2+r^3) \quad | \quad \mathbf{a=\dfrac{7}{1+r} } \\\\ 84 &=& \dfrac{7r^2(1 +r+r^2+r^3)}{1+r} \quad | \quad 1 +r+r^2+r^3 = \dfrac{1-r^4}{1-r} \\\\ 84 &=& \dfrac{7r^2\dfrac{1-r^4}{1-r}}{1+r} \\\\ 84 &=& \dfrac{7r^2(1-r^4)}{(1-r)(1+r)} \\\\ 84 &=& \dfrac{7r^2(1-r^4)}{(1-r^2)} \\\\ 84 &=& \dfrac{7r^2(1-r^2)(1+r^2)}{(1-r^2)} \\\\ 84 &=& 7r^2(1+r^2) \quad | \quad : 7 \\\\ 12 &=& r^2(1+r^2) \\\\ 12 &=& r^2 + r^4 \\\\ r^4+r^2 -12 &=& 0 \\\\ r^2 &=& \dfrac{-1\pm \sqrt{1-4*(-12)} }{2} \\ r^2 &=& \dfrac{-1\pm \sqrt{49} }{2} \\ r^2 &=& \dfrac{-1\pm 7 }{2} \\ \\ r^2 &=& \dfrac{-1+7 }{2} \\ r^2 &=& \dfrac{6 }{2} \\ r^2 &=& \mathbf{3} \\\\ r^2 &=& \dfrac{-1- 7 }{2} \\ r^2 &=& \dfrac{-8 }{2} \\ r^2 &=& -4 \qquad \text{r is a complex number! No solution} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s_4} &=& \mathbf{7(1+r^2)} \quad | \quad r^2 = 3 \\ s_4 &=& 7(1+3) \\ s_4 &=& 7*4 \\ \mathbf{s_4} &=& \mathbf{28} \\ \hline \end{array}\)

 

The sum of the first four terms is 28

 

laugh

19 февр. 2020 г.
 #3
avatar+26398 
+2
19 февр. 2020 г.
 #1
avatar+26398 
+2

Given that triangle ABCAis an irregular triangle, AD is the median which bisects BC, and the green, blue and red regions are squares.

If the total area of green region and blue region is 9, find the area of the red region.

 

\(b^2m+c^2n=a(d^2+mn)\)

Source: https://en.wikipedia.org/wiki/Cevian#Ratio_properties

 

\(\begin{array}{|rcll|} \hline b^2m+c^2n &=& a(d^2+mn) \quad | \quad m=n, a=2n \\ b^2n+c^2n &=& 2n(d^2+n^2) \\ (b^2+c^2)n &=& 2n(d^2+n^2) \\ {\color{red}b^2}+{\color{red}c^2} &=& 2({\color{blue}d^2}+{\color{green}n^2}) \\ {\color{red}b^2}+{\color{red}c^2} &=& 2*9 \\ \mathbf{{\color{red}b^2}+{\color{red}c^2}} &=& \mathbf{18} \\ \hline \end{array}\)

 

The area of the red region is 18

 

laugh

18 февр. 2020 г.