heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+1

Let \(a\) , \(b\) , and \(c\) be values chosen from \(\{~0,~1,~2,~3,~\ldots ~,100~\}\) .
They need not be distinct, but \(a\geq b\) .
How many ordered triples \((~a,~b,~c~)\) are there satisfying both \(|~a-b~|=c\) and \(|~b-c~|=a\) ?

 

\(\small{ \begin{array}{|lrcll|} \hline & |~a-b~| &=& c \qquad \text{square both sides} \\ (1) & (a-b)^2 &=& c^2 \\\\ & |~b-c~| &=& a \qquad \text{square both sides} \\ (2) & (b-c)^2 &=& a^2 \\ \hline \\ (1)+(2): & (a-b)^2 + (b-c)^2 &=& c^2 + a^2 \\ & a^2-2ab+b^2+b^2-2bc+c^2 &=& c^2 + a^2 \\ & -2ab+b^2+b^2-2bc &=& 0 \\ & 2b^2-2ab-2bc &=& 0 \quad | \quad : 2 \\ & b^2-ab-bc &=& 0 \\ &\mathbf{ b(b-a-c) } &=& \mathbf{0} \\ \hline \\ 1) & \mathbf{b} &=& \mathbf{0} \\ & |~a-b~| &=& c \quad | \quad b = 0 \\ & |~a-0~| &=& c \\ & |~a ~| &=& c \\ & \mathbf{a} &=& \mathbf{c} \\ \quad \text{List}~ 1: & \mathbf{(~a,~0,~a~)} && \begin{array}{|lcll|} \hline (~0,~0,~0~),\quad (~1,~0,~1~),\quad (~2,~0,~2~),\ \ldots (~99,~0,~99~),\ (~100,~0,~100~) \\ \mathbf{101} ~\text{ordered triples} \\ \hline \end{array} \\ \hline \\ 2) & \mathbf{b-a-c} &=& \mathbf{0} \\ & a+c &=& b \\ & a &\geq& b \quad | \quad b = a+c \\ & a&\geq & a+c \quad \text{possible if $c=0$} \\ & \mathbf{c} &=& \mathbf{0} \\ & |~b-c~| &=& a \quad | \quad c = 0 \\ & |~b-0~| &=& a \\ & |~b ~| &=& a \\ & \mathbf{b} &=& \mathbf{a} \\ \quad \text{List}~ 2: & \mathbf{(~a,~a,~0~)} && \begin{array}{|lcll|} \hline (~1,~1,~0~),\quad (~2,~2,~0~),\quad (~3,~3,~0~),\ \ldots (~99,~99,~0~),\ (~100,~100,~0~) \\ \mathbf{100} ~\text{ordered triples}\qquad (~0,~0,~0~)~\text{ is already included in the first list } \\ \hline \end{array} \\ \hline \end{array} }\)

 

\(\text{There are $101+100 = \mathbf{201}$ ordered triples}\)

 

laugh

3 мар. 2020 г.
 #1
avatar+26398 
+2

The first four terms in an arithmetic sequence are x + y, x - y, xy, and x/y, in that order.
What is the fifth term?
Express your answer as a common fraction.

 

\(\begin{array}{rclcl} a_1 &=& a &=& x+y \\ a_2 &=& a+d &=& x-y \\ a_3 &=& a+2d &=& xy \\ a_4 &=& a+3d &=& \dfrac{x}{y} \quad &| \quad y\neq 0 ~!\\ a_5 &=& a+4d &=& \ ? \\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{a_2} &=& \mathbf{a+d} \quad &| \quad a=x+y\\ a_2 &=& x+y+d \\ a_2-(x+y) &=&d \quad &| \quad a_2 = x-y \\ x-y-(x+y) &=&d \\ \mathbf{-2y} &=&\mathbf{d}\qquad (1) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{a_3} &=& \mathbf{a+2d} \quad &| \quad a=x+y \\ a_3 &=& x+y+2d \\ a_3-(x+y) &=& 2d \quad &| \quad a_3 = xy \\ \mathbf{ xy-(x+y)} &=& \mathbf{2d}\qquad (2) \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(2)}{(1)}: & \mathbf{ \dfrac{xy-(x+y)}{-2y}} &=& \mathbf{ \dfrac{2d}{d}} \\\\ & \dfrac{xy-(x+y)}{-2y} &=& 2 \\ & xy-(x+y) &=& -4y \\ & xy-x-y &=& -4y \\ & xy-x+3y &=& 0 \\ &\mathbf{ x-xy } &=& \mathbf{3y} \qquad (3) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{a_4} &=& \mathbf{a+3d} \quad &| \quad a=x+y \\ a_4 &=& x+y+3d \\ a_4-(x+y) &=& 3d \quad &| \quad a_4 = \dfrac{x}{y} \\ \mathbf{\dfrac{x}{y}-(x+y)} &=& \mathbf{3d} \qquad (4) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(4)}{(1)}: & \mathbf{ \dfrac{\dfrac{x}{y}-(x+y)}{-2y}} &=& \mathbf{ \dfrac{3d}{d}} \\\\ & \dfrac{\dfrac{x}{y}-(x+y)}{-2y} &=& 3 \\ & \dfrac{x}{y}-(x+y) &=& -6y \quad &| \quad *y \\ & x-(x+y)y &=& -6y^2 \\ & x-xy-y^2 &=& -6y^2 \\ & x-xy+5y^2 &=& 0 \quad &| \quad \mathbf{ x-xy =3y} \qquad (3) \\ & 3y+5y^2 &=& 0 \\ & y(3+5y) &=& 0 \quad &| \quad y\neq 0 ~!\\ & 3+5y &=& 0 \\ & 5y &=& -3 \\ & \mathbf{y} &=& \mathbf{-\dfrac{3}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{d} &=& \mathbf{-2y} \qquad (1) \\ d &=& -2\left(-\dfrac{3}{5}\right) \\ \mathbf{d} &=& \mathbf{ \dfrac{6}{5} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{ xy-(x+y)} &=& \mathbf{2d}\qquad (2) \\ \ldots \\ x &=& \dfrac{2d+y}{y-1} \quad & | \quad \mathbf{y=-\dfrac{3}{5}},\ \mathbf{d= \dfrac{6}{5} } \\ x &=& \dfrac{2 *\dfrac{6}{5}-\dfrac{3}{5}}{-\dfrac{3}{5}-1} \\ x &=& -\dfrac{9}{5}* \dfrac{5}{8} \\ \mathbf{x} &=& \mathbf{-\dfrac{9}{8}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline a &=& x+y \\ a &=& -\dfrac{9}{8}-\dfrac{3}{5} \\ \mathbf{a} &=& \mathbf{-\dfrac{69}{40}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline a_5 &=& a+4d \\ a_5 &=& -\dfrac{69}{40} + 4*\dfrac{6}{5} \\ a_5 &=& -\dfrac{69}{40} + \dfrac{24}{5} \\ a_5 &=& -\dfrac{69}{40} + \dfrac{24*8}{5*8} \\ \mathbf{a_5} &=& \mathbf{\dfrac{123}{40}} \\ \hline \end{array}\)

 

arithmetric sequence: \(\{-\dfrac{69}{40},~-\dfrac{21}{40},~\dfrac{27}{40},~\dfrac{75}{40},~\dfrac{123}{40},~\ldots\}\)

 

laugh

2 мар. 2020 г.
 #1
avatar+26398 
+1

Triangles ABC and ADE have areas \(2007\) and \(7002\) respectively, with
\(B=(0,0)\), \(C=(223,0)\), \(D=(680,380)\), and \(E=(689,389)\).
What is the sum of all possible x-coordinates of \(A\)?

(The answer is not -1238)

 

First solution for \(y_A\):

\(\begin{array}{rcl} \mathbf{\text{2[ABC]} } = \begin{array}{|rr|} x_A & y_A \\ 0 & 0 \\ 223 & 0 & \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\\\ \begin{array}{|rr|} x_A & y_A \\ 0 & 0 \\ 223 & 0 & \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\ \begin{array}{|rr|} x_A*0-0*y_A + 0*0-223*0+223*y_A-x_A*0 \end{array} &=& 2* 2007 \\ 223*y_A&=& 2* 2007 \quad | \quad : 223 \\ \mathbf{y_A} &=& \mathbf{18} \\ \end{array} \)

 

First solution for \(x_A\):

\(\begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & 18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & 18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 380x_A-680*18+680*389-689*380+689*18-389x_A \end{array} &=& 2* 2007 \\ -9x_A+680*371-689*362 &=& 2* 7002 \\ -9x_A+2862 &=& 2* 7002 \quad | \quad : (-9) \\ x_A - 318 &=& -1556\\ \mathbf{x_A} &=& \mathbf{-1238} \\ \end{array}\)

 

Second solution for \(x_A\):

\(\begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & 18 \\ 689 & 389 \\ 680 & 380 \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & 18 \\ 689 & 389 \\ 680 & 380 \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 389x_A-689*18+689*380-680*389+680*18-380x_A \end{array} &=& 2* 2007 \\ 9x_A+689*362-689*371 &=& 2* 7002 \\ 9x_A-2862 &=& 2* 7002 \quad | \quad : 9 \\ x_A - 318 &=& 1556\\ \mathbf{x_A} &=& \mathbf{1874} \\ \end{array}\)

 

Second solution for \(y_A\):

\(\begin{array}{rcl} \mathbf{\text{2[ABC]} } = \begin{array}{|rr|} x_A & y_A \\ 223 & 0 & \\ 0 & 0 \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\\\ \begin{array}{|rr|} x_A & y_A \\ 223 & 0 & \\ 0 & 0 \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\ \begin{array}{|rr|} x_A*0-223*y_A +223*0 - 0*0 + 0*y_A -x_A*0 \end{array} &=& 2* 2007 \\ -223*y_A&=& 2* 2007 \quad | \quad : (-223) \\ \mathbf{y_A} &=& \mathbf{-18} \\ \end{array}\)

 

Third Solution for \(x_A\):

\( \begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & -18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & -18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 380x_A+680*18+680*389-689*380-689*18-389x_A \end{array} &=& 2* 2007 \\ -9x_A+680*407-689*398 &=& 2* 7002 \\ -9x_A+2538 &=& 2* 7002 \quad | \quad : (-9) \\ x_A - 282 &=& -1556\\ \mathbf{x_A} &=& \mathbf{-1274} \\ \end{array} \)

 

Fourth Solution for \(x_A\):

\(\begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & -18 \\ 689 & 389 \\ 680 & 380 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & -18 \\ 689 & 389 \\ 680 & 380 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 389x_A+689*18+689*380-680*389-680*18-380x_A \end{array} &=& 2* 2007 \\ 9x_A+689*398-680*407 &=& 2* 7002 \\ 9x_A-2538 &=& 2* 7002 \quad | \quad : 9 \\ x_A - 282 &=& 1556\\ \mathbf{x_A} &=& \mathbf{1838} \\ \end{array}\)

 

The sum of all possible x-coordinates of \(A\) is \(-1238+1874-1274+1838 = \mathbf{1200}\)

 

laugh

28 февр. 2020 г.
 #1
avatar+26398 
+3

Triangles ABC and ADE have areas \(2007 \)and \(7002 \)respectively, with
\(B=(0,0)\),
\(C=(223,0)\),
\(D=(680,380)\), and
\(E=(689,389)\).
What is the sum of all possible x-coordinates of A?

 

My attempt:

I use the Gauss's shoelace area formula.

 

\(\text{First solution for $y_A$} :\\ \begin{array}{rcl} \mathbf{\text{2[ABC]} } = \begin{array}{|rr|} x_A & y_A \\ 0 & 0 \\ 223 & 0 & \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\\\ \begin{array}{|rr|} x_A & y_A \\ 0 & 0 \\ 223 & 0 & \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\ \begin{array}{|rr|} x_A*0-0*y_A + 0*0-223*0+223*y_A-x_A*0 \end{array} &=& 2* 2007 \\ 223*y_A&=& 2* 2007 \quad | \quad : 223 \\ \mathbf{y_A} &=& \mathbf{18} \\ \end{array} \\ \text{First solution for $x_A$}: \\ \begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & 18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & 18 \\ 680 & 380 \\ 689 & 389 & \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 380x_A-680*18+680*389-689*380+689*18-389x_A \end{array} &=& 2* 2007 \\ -9x_A+680*371-689*362 &=& 2* 7002 \\ -9x_A+2862 &=& 2* 7002 \quad | \quad : (-9) \\ x_A - 318 &=& -1556\\ \mathbf{x_A} &=& \mathbf{-1238} \\ \end{array} \\ \text{Second solution for $x_A$}: \\ \begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & 18 \\ 689 & 389 \\ 680 & 380 \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & 18 \\ 689 & 389 \\ 680 & 380 \\ x_A & 18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 389x_A-689*18+689*380-680*389+680*18-380x_A \end{array} &=& 2* 2007 \\ 9x_A+689*362-689*371 &=& 2* 7002 \\ 9x_A-2862 &=& 2* 7002 \quad | \quad : 9 \\ x_A - 318 &=& 1556\\ \mathbf{x_A} &=& \mathbf{1874} \\ \end{array} \\ \text{Second solution for $y_A$}: \\ \begin{array}{rcl} \mathbf{\text{2[ABC]} } = \begin{array}{|rr|} x_A & y_A \\ 223 & 0 & \\ 0 & 0 \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\\\ \begin{array}{|rr|} x_A & y_A \\ 223 & 0 & \\ 0 & 0 \\ x_A & y_A \\ \end{array} &=& 2* 2007 \\ \begin{array}{|rr|} x_A*0-223*y_A +223*0 - 0*0 + 0*y_A -x_A*0 \end{array} &=& 2* 2007 \\ -223*y_A&=& 2* 2007 \quad | \quad : (-223) \\ \mathbf{y_A} &=& \mathbf{-18} \\ \end{array} \\ \text{Third Solution for $x_A$}: \\ \begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & -18 \\ 680 & 380 \\ 689 & 389 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & -18 \\ 680 & 380 \\ 689 & 389 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 380x_A+680*18+680*389-689*380-689*18-389x_A \end{array} &=& 2* 2007 \\ -9x_A+680*407-689*398 &=& 2* 7002 \\ -9x_A+2538 &=& 2* 7002 \quad | \quad : (-9) \\ x_A - 282 &=& -1556\\ \mathbf{x_A} &=& \mathbf{-1274} \\ \end{array} \\ \text{Fourth Solution for $x_A$}: \\ \begin{array}{rcl} \mathbf{\text{2[ADE]} } = \begin{array}{|rr|} x_A & -18 \\ 689 & 389 \\ 680 & 380 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\\\ \begin{array}{|rr|} x_A & -18 \\ 689 & 389 \\ 680 & 380 \\ x_A & -18 \\ \end{array} &=& 2* 7002 \\ \begin{array}{|rr|} 389x_A+689*18+689*380-680*389-680*18-380x_A \end{array} &=& 2* 2007 \\ 9x_A+689*398-680*407 &=& 2* 7002 \\ 9x_A-2538 &=& 2* 7002 \quad | \quad : 9 \\ x_A - 282 &=& 1556\\ \mathbf{x_A} &=& \mathbf{1838} \\ \end{array} \\ \text{The sum of all possible x-coordinates of A is $-1238+1874-1274+1838 = \mathbf{1200}$} \)

 

laugh

27 февр. 2020 г.
 #1
avatar+26398 
+1
26 февр. 2020 г.