heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

find the derivative using implicit differentiation. \(\tan(x - y) = \dfrac{y}{5 + x^2}\)

 

Derivative: \((5 + x^2)\tan(x - y) -y=0\)

 

Formula: \(y'(x) = -\dfrac{F_x}{F_y}\)

 

\(\small{ \begin{array}{|rcll|} \hline \mathbf{F_x = \ ?} \\ \hline F_x &=& \dfrac{d }{dx}(5 + x^2)\tan(x - y)- \dfrac{d}{dx}y \quad | \quad \dfrac{d}{dx}y = 0 \\ F_x &=& \dfrac{d }{dx}(5 + x^2)\tan(x - y)-0 \\ F_x &=& \dfrac{d }{dx}(5 + x^2)\tan(x - y) \\ F_x &=& (5 + x^2)\dfrac{d }{dx}\tan(x - y)+\tan(x - y)\dfrac{d }{dx}(5 + x^2) \quad | \quad \dfrac{d }{dx}(5 + x^2) = 2x \\ F_x &=& (5 + x^2)\dfrac{d }{dx}\tan(x - y)+2x\tan(x - y)\dfrac{d }{dx} \quad | \quad \dfrac{d }{dx}\tan(x - y) = \dfrac{1}{\cos^2(x-y)}*1 \\ F_x &=& (5 + x^2)\dfrac{1}{\cos^2(x-y)}*1+2x\tan(x - y) \\ F_x &=& \dfrac{5 + x^2+2x\tan(x - y)\cos^2(x-y)}{\cos^2(x-y)} \\ F_x &=& \dfrac{5 + x^2+2x\sin(x - y)\cos(x-y)}{\cos^2(x-y)} \quad | \quad 2\sin(x - y)\cos(x-y) = \sin\Big(2(x-y)\Big) \\ \mathbf{F_x} &=& \mathbf{\dfrac{5 + x^2+x\sin\Big(2(x-y)\Big)}{\cos^2(x-y)}} \\ \hline \end{array} }\)

 

\(\small{ \begin{array}{|rcll|} \hline \mathbf{F_y = \ ?} \\ \hline F_y &=& \dfrac{d }{dy}(5 + x^2)\tan(x - y)- \dfrac{d}{dy}y \quad | \quad \dfrac{d}{dy}y = 1 \\ F_y &=& \dfrac{d }{dy}(5 + x^2)\tan(x - y)-1 \\ F_y &=& (5 + x^2)\dfrac{d }{dy}\tan(x - y)-1 \quad | \quad \dfrac{d }{dx}\tan(x - y) = \dfrac{1}{\cos^2(x-y)}*(-1) \\ F_y &=& (5 + x^2)\dfrac{1}{\cos^2(x-y)}*(-1) -1 \\ F_y &=& -\left( \dfrac{(5 + x^2)}{\cos^2(x-y)} +1 \right) \\ F_y &=& -\left( \dfrac{5 + x^2+\cos^2(x-y)}{\cos^2(x-y)} \right) \quad | \quad \cos^2(x-y)=\dfrac{1+ \cos\Big(2(x-y)\Big)}{2} \\ F_y &=& -\left( \dfrac{5 + x^2+\dfrac{1+ \cos\Big(2(x-y)\Big)}{2}}{\cos^2(x-y)} \right) \\ F_y &=& -\left( \dfrac{10 + 2x^2+1+ \cos\Big(2(x-y)\Big)}{2\cos^2(x-y)} \right) \\ \mathbf{F_y} &=& \mathbf{ -\left( \dfrac{11 + 2x^2+\cos\Big(2(x-y)\Big)}{2\cos^2(x-y)} \right)} \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline y'(x) &=& -\dfrac{F_x}{F_y} \\\\ y'(x) &=& -\dfrac{\dfrac{5 + x^2+x\sin\Big(2(x-y)\Big)}{\cos^2(x-y)}} {-\left( \dfrac{11 + 2x^2+\cos\Big(2(x-y)\Big)}{2\cos^2(x-y)} \right)} \\\\ y'(x) &=& \dfrac{\dfrac{5 + x^2+x\sin\Big(2(x-y)\Big)}{\cos^2(x-y)}} {\dfrac{11 + 2x^2+\cos\Big(2(x-y)\Big)}{2\cos^2(x-y)} } \\\\ y'(x) &=& \dfrac{ 2\left( 5 + x^2+ x\sin \Big(2(x-y)\Big) \right) } { 11 + 2x^2 +\cos\Big(2(x-y)\Big)} \\\\ \mathbf{y'(x)} &=& \mathbf{\dfrac{ 2\Big( 5 + x^2+ x\sin(2x-2y) \Big) } { 11 + 2x^2 +\cos(2x-2y)} } \\ \hline \end{array}\)

 

laugh

26 февр. 2020 г.
 #1
avatar+26398 
+1

Let \(\mathbf{a}\) be a vector of length 2, and let \(\mathbf{b}\) and \(\mathbf{c} \) be vectors such that
\(\mathbf{a} \bullet \mathbf{b} = 3,\ \mathbf{a} \bullet \mathbf{c} = 4,\ \mathbf{b} \bullet \mathbf{c} = 5\).
Find \(\mathbf{a}\bullet( \mathbf{b} + \mathbf{c}),\ \mathbf{b}\bullet(\mathbf{a} +\mathbf{b} + \mathbf{c}),\ (\mathbf{a} + 2\mathbf{b})\bullet(-3\mathbf{a} + 3\mathbf{c})\).
If any of these cannot be uniquely determined from the information given, enter a question mark.

 

\(\mathbf{a}\bullet( \mathbf{b} + \mathbf{c})\\ \begin{array}{|rcll|} \hline && \mathbf{a}\bullet( \mathbf{b} + \mathbf{c}) \\ &=& \mathbf{a}\bullet\mathbf{b}+\mathbf{a}\bullet \mathbf{c} \quad | \quad \mathbf{a} \bullet \mathbf{b} = 3,\ \mathbf{a} \bullet \mathbf{c} = 4 \\ &=& 3+4 \\ &=& \mathbf{7} \\ \hline \end{array} \)

 

\(\mathbf{b}\bullet(\mathbf{a} +\mathbf{b} + \mathbf{c}) \\ \begin{array}{|rcll|} \hline && \mathbf{b}\bullet(\mathbf{a} +\mathbf{b} + \mathbf{c}) \\ &=& \mathbf{b}\bullet \mathbf{a} + \mathbf{b}\bullet\mathbf{b} + \mathbf{b}\bullet\mathbf{c} \\ &=& \mathbf{a}\bullet \mathbf{b} + \mathbf{b}\bullet\mathbf{b} + \mathbf{b}\bullet\mathbf{c} \\ &=& 3 + \mathbf{b}\bullet\mathbf{b} + 5 \\ &=& 8 + \mathbf{b}\bullet\mathbf{b} \\ &=& ? \\ \hline \end{array} \)

 

\((\mathbf{a} + 2\mathbf{b})\bullet(-3\mathbf{a} + 3\mathbf{c}) \\ \begin{array}{|rcll|} \hline && (\mathbf{a} + 2\mathbf{b})\bullet(-3\mathbf{a} + 3\mathbf{c}) \\ &=& (-3)\mathbf{a}\bullet\mathbf{a}+3\mathbf{a}\bullet\mathbf{c}-6\mathbf{b}\bullet\mathbf{a}+6\mathbf{b}\bullet\mathbf{c} \\ &=& (-3)\mathbf{a}\bullet\mathbf{a}+3\mathbf{a}\bullet\mathbf{c}-6\mathbf{a}\bullet\mathbf{b}+6\mathbf{b}\bullet\mathbf{c} \quad | \quad \mathbf{a}\bullet\mathbf{a} = 2^2 \\ &=& (-3)*2^2+3*4-6*3+6*5 \\ &=& -12+12-18+30 \\ &=& -18+30 \\ &=& \mathbf{12} \\ \hline \end{array} \)

 

laugh

25 февр. 2020 г.