heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+3

Consider the series. 

\(\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n}*4} \\\\ &=& \dfrac{1}{4} \left( \sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n}} \right) \\\\ &=& \dfrac{1}{4} \left[ \sum \limits_{n=1}^{\infty} (1+4n) \left( \dfrac{1}{4}\right)^{n} \right] \\\\ &=& \dfrac{1}{4} \left[ -1 + \sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} \right] \\\\ \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{1}{4}( -1 + s )} \qquad \boxed{s=\sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} } \\ \hline \end{array}\)

 

Infinite arithmetico-geometric sequence:

\(\begin{array}{|rcll|} \hline s &=& \sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} \\ \hline \end{array}\)

\({\color{red}a}{\color{blue}b }+(a+d){\color{blue}br }+{\color{red}(a+2d)}{\color{blue}br^2 }+{\color{red}(a+3d)}{\color{blue}br^3 }+\cdots + {\color{red}\Big(a+(n-1)d \Big)}{\color{blue}br^{n-1} } + \cdots\)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:}\quad 1+5+9+13+17+\ldots \\ {\color{red}1}+({\color{red}1}+1*{\color{orange}4})+({\color{red}1}+2*{\color{orange}4})+({\color{red}1}+3*{\color{orange}4})+\dotsb+\Big({\color{red}1}+(n-1)*{\color{orange}4}\Big)+\dotsb \\ \boxed{a={\color{red}1},\ d={\color{orange}4} \text{ is the common difference} } \\\\ \text{geometric series:}\quad 1+1*\frac{1}{4^1}+1*\frac{1}{4^2}+ 1*\frac{1}{4^3}+ 1*\frac{1}{4^4}+\cdots \\ {\color{blue}1} +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^1 +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^2 +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^3 +\dotsb +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^{n-1} +\dotsb\\ \boxed{ b={\color{blue}1},\ r={\color{green}\frac{1}{4}}\ \text{ is the common ratio} } \\ \hline \end{array} \)

 

Formula:
sum of a infinite arithmetico-geometric sequence: \(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\\\ && \boxed{a={\color{red}1},\ d={\color{orange}4} \text{ is the common difference} } \\ &&\boxed{ b={\color{blue}1 },\ r={\color{green}\frac{1}{4}}\ \text{ is the common ratio} } \\\\ s &=& \left(\dfrac{{\color{blue}1} }{1-{ \color{green}\frac{1}{4}} }\right) \Bigg( {\color{red}1} + { \color{orange}4} \left( \dfrac{ {\color{green}\frac{1}{4} }}{1-{\color{green}\frac{1}{4}} } \right) \Bigg) \\\\ s &=& \dfrac{4}{3}\left( {\color{red}1} + \dfrac{4}{3} \right) \\\\ s &=& \dfrac{4}{3} *\dfrac{7}{3} \\\\ \mathbf{s} &=& \mathbf{\dfrac{28}{9}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{1}{4}( -1 + s )} \quad | \quad s=\dfrac{28}{9} \\\\ &=& \dfrac{1}{4}\left( -1 + \dfrac{28}{9} \right) \\\\ &=& \dfrac{1}{4}\left( \dfrac{19}{9} \right) \\\\ \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{19}{36}} \\ \hline \end{array}\)

 

laugh

24 февр. 2020 г.
 #5
avatar+26398 
+2

In the diagram, O is lacated at (0,0), U is located at (7,6),
and V is located at (11,6).
Assume that R, S, T, U, V, and W are midpoints.

 

\(1)\\ \begin{array}{|rcl|rcl|rcl|} \hline R &=& U + \dfrac{TR}{2} & \dfrac{TR}{2}+T &=& U & T &=& \dfrac{Q}{2} \\ && & \dfrac{TR}{2}+\dfrac{Q}{2} &=& U \\ && & \dfrac{TR}{2} &=& U-\dfrac{Q}{2} \\ R &=& U + U-\dfrac{Q}{2} \\ \mathbf{R} &=& \mathbf{2U-\dfrac{Q}{2}} \\ \hline S &=& T+TS & T+\dfrac{TS}{2} &=& V & T &=& \dfrac{Q}{2} \\ & & & \dfrac{Q}{2}+\dfrac{TS}{2} &=& V \quad | \quad *2 \\ & & & Q+TS &=& 2V \\ & & & TS &=& 2V-Q \\ S &=& \dfrac{Q}{2} + 2V-Q \\ \mathbf{S} &=& \mathbf{2V-\dfrac{Q}{2}} \\ \hline \end{array}\)

 

\(2)\\ \begin{array}{|rcl|rcl|rcl|} \hline && &P &=& S + \dfrac{QP}{2} & QP &=& 2(S-Q) \\ && &P &=& S + (S-Q) \\ && &P &=& 2S-Q & S&=&2V-\dfrac{Q}{2} \\ && &P &=& 4V-Q-Q \\ && &\mathbf{P} &=& \mathbf{4V-2Q} \\ \hline && &P &=& 2R & R&=&2U-\dfrac{Q}{2} \\ && &\mathbf{P} &=& \mathbf{4U-Q} \\ P= 4U-Q &=& 4V-2Q \\ 4U-Q &=& 4V-2Q \\ \mathbf{ Q }&=& \mathbf{4V-4U} \\ \hline \end{array} \\ 3)\\ \begin{array}{|rcl|rcl|rcl|} \hline W&=& \dfrac{1}{2}( R+S )& R&=&2U-\dfrac{Q}{2} & S&=&2V-\dfrac{Q}{2} \\ W&=& \dfrac{1}{2}( 2U-\dfrac{Q}{2}+2V-\dfrac{Q}{2} ) \\ W&=& \dfrac{1}{2}( 2U+2V-Q ) \\ \mathbf{ W }&=& \mathbf{U+V-\dfrac{Q}{2}} \\ \hline \end{array}\)

 

\(\text{Summary:}\quad Q=4V-4U \\ \begin{array}{|rcll|} \hline T&=& \dfrac{Q}{2} \\ R&=& 2U-\dfrac{Q}{2} \\ S&=& 2V-\dfrac{Q}{2} \\ W&=& U+V-\dfrac{Q}{2} \\ P&=& 4U-Q \\ \hline \end{array}\)

 

Substitute \(Q\):

\(\begin{array}{|rcll|} \hline T &=& -2U+2V \\ Q &=& -4U+4V \\ R &=& 4U-2V \\ S &=& 2U \\ W &=& 3U-V \\ P &=& 8U-4V \\ \hline \end{array}\)

 

Substitute \(U(7,6)\) and \(V(11,6)\):

\(\begin{array}{|rcll|} \hline \mathbf{T} &=& -2(7,6)+2(11,6) = (-14+22, -12+12) =\mathbf{(8,0)}\\ \mathbf{Q} &=& -4(7,6)+4(11,6) = (-28+44, -24+24) =\mathbf{(16,0)}\\ \mathbf{R} &=& 4(7,6)-2(11,6) = (28-22, 24-12) =\mathbf{(6,12)}\\ \mathbf{S} &=& 2(7,6) = \mathbf{(14, 12)} \\ \mathbf{W} &=& 3(7,6)-(11,6) = (21-11, 18-6) =\mathbf{(10,12)}\\ \mathbf{P} &=& 8(7,6)-4(11,6) = (56-44, 48-24) =\mathbf{(12,24)}\\ \hline \end{array}\)

 

 

laugh

22 февр. 2020 г.
 #3
avatar+26398 
+1

A series is given by
\(\dfrac{1}{7^1}+\dfrac{2}{7^2}+\dfrac{3}{7^3}+\dfrac{4}{7^4}+\dfrac{5}{7^5}+\cdots \).

 

This is a infinite arithmetico-geometric sequence.

In general: \({\color{red}a}{\color{blue}b }+(a+d){\color{blue}br }+{\color{red}(a+2d)}{\color{blue}br^2 }+{\color{red}(a+3d)}{\color{blue}br^3 }+\cdots + {\color{red}\Big(a+(n-1)d \Big)}{\color{blue}br^{n-1} } + \cdots \)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:}\quad 1+2+3+4+5+\ldots \\ {\color{red}1}+({\color{red}1}+1*{\color{orange}1})+({\color{red}1}+2*{\color{orange}1})+({\color{red}1}+3*{\color{orange}1})+\dotsb+\Big({\color{red}1}+(n-1)*{\color{orange}1}\Big)+\dotsb \\ \boxed{a={\color{red}1},\ d={\color{orange}1} \text{ is the common difference} } \\\\ \text{geometric series:}\quad \frac{1}{7^1}+\frac{1}{7^2}+ \frac{1}{7^3}+ \frac{1}{7^4}+ \frac{1}{7^5}+\cdots \\ {\color{blue}\frac{1}{7} } +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^1 +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^2 +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^3 +\dotsb +{\color{blue}\frac{1}{7} }\left({\color{green}\frac{1}{7}}\right)^{n-1} +\dotsb\\ \boxed{ b={\color{blue}\frac{1}{7} },\ r={\color{green}\frac{1}{7}}\ \text{ is the common ratio} } \\ \hline \end{array} \)

 

Formula:
sum of a infinite arithmetico-geometric sequence

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\\\ && \boxed{a={\color{red}1},\ d={\color{orange}1} \text{ is the common difference} } \\ &&\boxed{ b={\color{blue}\frac{1}{7} },\ r={\color{green}\frac{1}{7}}\ \text{ is the common ratio} } \\\\ s &=& \left(\dfrac{{\color{blue}\frac{1}{7}} }{1-{ \color{green}\frac{1}{7}} }\right) \Bigg( {\color{red}1} + { \color{orange}1} \left( \dfrac{ {\color{green}\frac{1}{7} }}{1-{\color{green}\frac{1}{7}} } \right) \Bigg) \\\\ s &=& \frac{1}{7}*\frac{7}{6} \left( {\color{red}1} + \frac{1}{7}*\frac{7}{6} \right) \\\\ s &=& \frac{1}{6} \left( {\color{red}1} + \frac{1}{6} \right) \\\\ s &=& \frac{1}{6} *\frac{7}{6} \\\\ \mathbf{s} &=& \mathbf{\frac{7}{36}} \\ \hline \end{array}\)

 

\(\mathbf{\dfrac{1}{7^1}+\dfrac{2}{7^2}+\dfrac{3}{7^3}+\dfrac{4}{7^4}+\dfrac{5}{7^5}+\cdots} = \mathbf{\dfrac{7}{36}}\)

 

laugh

21 февр. 2020 г.
 #3
avatar+26398 
+2
20 февр. 2020 г.